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Control of Multi-hop Communication Networks
for Inter-session Network Coding

Atilla Eryilmaz, Desmond S. Lun, and B. T. Swapna

Abstract

This paper provides a solution to the question of how, when and where to perform inter-session network coding for
a general network model both under wired and wireless conditions. In particular, an original queuing architecture and a
dynamic routing-scheduling-coding strategy are introduced for serving multiple sessions when linear network codingis
allowed across sessions. This policy provides a novel extension to the class of back-pressure policies by incorporating
inter-session coding decisions via simple rules on the relevant queue-length levels. Despite the fact that the capacity
region of inter-session coding is a challenging open problem, in this paper, we prove that our algorithm can support
any set of rates in a non-trivial characterized region of achievable rates. In addition to its practical implications, this
work also provides a theoretical framework in which the gains of inter-session network coding and pure routing can be
compared.

Index Terms

Inter-session Network Coding, Backpressure Policies, Lyapunov Stability, Stochastic Networks, Butterfly Network,
Dynamic Algorithms

I. I NTRODUCTION

The efficient use of the scarce resources of communication networks is critical in providing high quality service to
the flows (or sessions) that compete for these resources. Thus, any method which conveys more information with the
same number of transmissions is extremely valuable for network performance. Network Coding is one of the most
promising methods that suggests significant throughput, delay and energy gains over existing strategies [1].

Traditionally, packets that are generated by the source of asession are forwarded through intermediate nodes towards
their destinations without modification. This approach hasbeen challenged by Ahlswede et al. in their seminal work
[2] where they introduced the concept of Network Coding, which allows intermediate nodes tomix the information
contained in different packets into a newly generated packet. It has been shown in [2] that such an operation has the
effect of relieving congested areas of the network while spreading the information transfer over less congested parts,
thus achieving significantly higher end-to-end throughputthan is possible with traditional methods.

Network Coding in packet networks can be classified into two types:intra-session coding (where coding is restricted
to packets belonging to the same session or connection) andinter-session coding (where this restriction is lifted and
coding is allowed among packets belonging to possibly different sessions). The former, which is also referred to
as superposition coding [3], has been extensively studied.It is well-known that intra-session coding improves the
throughput of lossless multicast sessions (see, for example, [2], [4], [5]) and of lossy sessions—unicast or multicast
(see, for example, [6], [7]). It is also known, however, thatintra-session coding is suboptimal [3]: inter-session coding
is necessary to achieve optimal throughput in general.

Performing inter-session coding, however, is not straightforward. To perform inter-session coding optimally, linear
coding operations are not sufficient [8], and, even if we limit ourselves to a particular class of linear coding operations,
deciding what operations to perform is anNP-hard problem [4]. Optimal inter-session coding, however,is not necessary:
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sub-optimal inter-session coding can achieve significant performance gains in practice, as demonstrated byCOPE[9]—a
protocol for inter-session coding that has been evaluated in simulation studies and testbed implementations. Remark-
ably, COPE simply exploits a rudimentary form of inter-session codingthat generalizes the “physical piggybacking”
discussed in [10]. We are therefore motivated to develop methods for inter-session coding that, though not optimal,
achieve significant throughput gains over intra-session coding for a wide range of networks.

The main contributions of this work are as follows.

• We introduce a novel queueing architecture to capture the decodability constraint of inter-session coding operations
and propose a dynamic algorithm that utilizes the resultingqueue-length information to make simple scheduling,
routing and inter-session network coding decisions. The adaptive nature of the algorithm allows its use in networks
with unknown topologies and arrival statistics. In the algorithm, every node utilizes only that information which
is relevant to its decision, which naturally facilitates distributed operation.

• We provide a rigorous analysis of the network performance, and prove that our algorithm can support any flow
rate which lies within an inter-session achievable rate region characterized in [11]—a region that we refer to
as Λ. The regionΛ is not the capacity region of inter-session network coding,since this region is unknown,
except under some additional restrictions (e.g. [12]); rather it is a non-trivial expansion of the capacity region
of intra-session network coding that relies only on simple,practicableXOR coding. The region is constructed by
exploiting coding opportunities of the “butterfly” type (see Figure 1), which is the type of inter-session coding
that is most overwhelmingly considered in the literature.

This paper continues the work along the line of suboptimal, yet improved, methods for inter-session coding, which
includes [13], [14], [11], [15]. The defining characteristic of this paper is that, rather than proposing an algorithm
that operates on given flow rates (or ones it measures), we propose a dynamic routing-scheduling-coding strategy that
operates solely on appropriately maintained queue-state information. Thus, although the algorithm described in [15]
(which is the result of independent work by Ho et al.) bears some similarities to our strategy, it nevertheless differs in
this defining aspect. Dynamic strategies such as ours do not require flow rates as an input and can be run “on-line”.
They will generally take some time to find the desired operating point, but they are robust to dynamics of flows and
network topology because they react to present circumstances as measured by the state of the queues.

Our strategy extends that ofCOPE and can be seen, moreover, as an extension of the dynamic routing-scheduling
strategies of Tassiulas and Ephremides [16] and others (e.g. [17], [18], [19], [20], [21]), which do not allow for
coding; and of the dynamic routing-scheduling-coding strategy [22], which allows for only intra-session coding. We
also note more recent works on the dynamic coding-scheduling strategy [23], coding-aware queue management for
unicast flows [24], [25], and energy efficient network codingdesign in wireless networks [26] that utilize inter-session
coding. These works, however, differ from ours in that they are built uponCOPE-like coding that explore inter-session
coding opportunities where decoding must happen within onehop. In comparison, our strategy allows -in fact seeks-
inter-session coding opportunities beyond the next hop neighbors, and thus can achieve a larger throughput region, as
demonstrated in our numerical results (see Section VII).

This line of work suggests a paradigm shift in the way we approach the notion of capacity. In particular, rather
than aiming for explicit characterizations of the capacityregion of complex networks, which is generally a difficult
task, we aim to develop distributively computable decisionrules that can be shown, via control theoretic techniques,
to achieve close to capacity performance. In fact, this approach suggests an algorithmic way to accurately estimate
the capacity region of complex networks.

The rest of the paper is organized as follows. In Section II, we introduce a general system model and describe our
goal. In Sections III and IV, we respectively focus on the wired butterfly and wireless exchange networks, which form
the building block for the general scenario, to describe ourdynamic algorithm and provide insight into its operation.
In Section V, we consider general wired networks, and we describe our joint routing, scheduling, and coding strategy
and prove its stabilizing properties. In Section VI, we describe how our algorithm and performance analysis can be
extended to the case of wireless networks. After discussingseveral numerical results in Section VII, we complete with
concluding comments in Section VIII.
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II. SYSTEM MODEL AND GOAL

Although our algorithm and analysis apply to both wireline and wireless networks, for purposes of exposition we
provide most of our descriptions and analysis for the wireline network model (Sections III and V), and subsequently
point out to the main components necessary to extend the arguments to the wireless network case (Sections IV and VI).
Next, we describe the system model for wired and wireless networks, the traffic model, and the coding capabilities.

In both the wired and wireless context, we assume that the system operates in a time-slotted manner, where all
nodes are assumed to be synchronized to a common clock1. We consider a packet network, where eachpacket, denoted
by P, is a vector of lengthm over a finite fieldFq for fixed integer values ofm andq.
Coding Capability: Traditional networks treat packets as unalterable objects and are concerned with their forwarding
from the source to destinations. Thus, they are concerned with the scheduling and routingproblems of network
communications. In this work, we allow each node to performlinear network codingover the packets it holds. In
particular, for a set{P1, · · · ,PK} of packets, a node can create a coded packet

P =

K
∑

k=1

akPk,

whereak ∈ Fq for k = 1, · · · , K, and the summation is over the finite fieldFq
2. Hence, the contents of packets are

allowed to be modified in the interior of the network. Such a network coding operation is shown to provide throughput
gains compared to traditional forwarding strategies ([2]). It is also known that random coding of packets that belong
to the same session (intra-sessioncoding) is always advantageous ([27], [7]). However, arbitrary random coding of
packets across different sessions (inter-sessioncoding) may be either advantageous or harmful to performance. This is
because the receivers may not be able to accumulate sufficient side information to decode the randomly coded packets
unless proactive effort is exerted to convey critical side information to the intended receivers.
Wireline Network Model : We model a wireline network as a directed graphG = (N , E), whereN is the set of
nodes andE is a set of directed edges (links) that represent point-to-point connections. We incorporate effects of
link failures into the model by assuming that link qualitieschange over time according to some unknown stochastic
process. In particular, every link takes one of a set of states in every slot which determines the number of packets that
can be transmitted over that link in that slot. It is assumed that nodes know the state of their outgoing links at the
beginning of each time slot. Notice that we do not assume the knowledge of channel statistics which may be difficult
to obtain, but limit the knowledge to locally available channel state information. To facilitate exposition, we assume
that the state space for channel quality of each link consists of two states: ON and OFF, where in the ON state a
single packet can be transmitted, while in the OFF state no packet can be transmitted. We letC(i,j)[t] ∈ {0, 1} denote
the channel state of the link(i, j) ∈ E at timeslott and denote its mean byγ(i,j). Althoughγ(i,j) is a function of the
underlying channel statistics, its value is not known sincethe statistics are assumed to be unknown. Moreover, we
assume that the link state of a given link is independently and identically distributed (i.i.d.) in every time slot. These
assumptions are not restrictive and can be extended to allowmore states (each representing the supportability of a
different number of packet transmissions), and stationaryand ergodic channel state processes (see for example [19]).
Wireless Network Model: Wireless network model differs from its wireline counterpart in two aspects: availability of
broadcast transmissions and existence of interference. Wecapture the broadcast nature of transmissions by modeling
the network as a directedhypergraphH = (N , E), whereN is the set of nodes andE is a set of directed hyperedges3

that represent broadcast transmissions. To capture the interference between concurrent transmissions, we letΘ denote
the set of all feasible hyperlink activation vectors, whereeach feasible vector is a0 − 1 vector that yields a set of
nonconflicting hyperlinks that can be simultaneously active. If a hyperlink(m, N) is allowed to transmit, we use
γ(m,N) to denote the mean transmission rate that is achievable overit. Similar to the wireline case, a description for
the wireless network of the regionΛ in which intersession coding is allowed is provided in Section VI.

1This assumption, commonly made in the literature, can be relaxed by including a buffer zone between subsequent slots, and hence rendering
an imperfectly synchronized system effectively synchronized.

2In our discussions, for ease of exposition, we will assume that q = 2 and the summation is a simpleXOR operation.
3A hyperedge is a generalization of an edge that starts at a single node and ends at possibly more than one node.
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Traffic and Queueing Model: A setF of flows (or sessions) compete for the resources of the network, where each
flow, sayf ∈ F , is described with its beginning node, denoted bys(f) ∈ N , and its destination node, denoted by
d(f) ∈ N . We assume that associated with each flow, sayf, there is a fixed route withNf andEf that respectively
denotes the set of nodes and the set of links that the flow traverses. Thus, unless packets of a flow is coded with
another flow’s packets, their route to the destination is set. Our interest is in optimally identifying inter-session coding
opportunities that will exploit network resources. We letA(f)[t] denote the number of exogenously generated Flow-f

packets that enters(f) at the beginning of time slott to be transmitted tod(f). We assume thatA(f)[t] i.i.d.4 over t
with a mean ofλ(f) and finite second moment.

The coded or uncoded packets are maintained in infinite size queues as they traverse the network nodes. We note
that the architecture of the queueing network is a decision choice in the overall design. Thus, the goal of the design is
to develop the queuing architecture and the routing-scheduling-coding operations to be performed within the network
so as to achieve the stability of all the queues as long as the mean arrival rates are achievable. Next, we define a
strong notion of stability that is commonly required.

Definition 1 (Stability, Achievability):A queue with queue lengthQ[t] at time t is said to be ‘stable’ if

lim sup
T→∞

1

T

T−1
∑

t=0

E[Q[t]] < ∞.

Further, we say that a mean arrival rate vectorλ = (λ(f)) is ‘achievable for a given policy’ if, under that policy, all
the queues in the network are stable when the mean arrival rates areλ.

In our discussions, we letΓ denote thecapacityof linear inter-session coding for a given network and set offlows,
which describes the largest set of achievable flow rates whenlinear network coding is allowed across sessions. The
characterization of the capacity regionΓ is currently unknown for a general network topology, but there are works
which characterize an achievable region (e.g. [11]) or the full capacity region under pairwise coding limitation ([12]).

Our work builds on the work by Traskov et al. [11], which provides a non-trivial achievable region that we denote
by Λ. We propose a novel queueing architecture and a dynamic algorithm that reacts to the network state to achieve
high throughput. In particular, we develop a decentralizedrouting-scheduling-coding algorithm which, in addition to
scheduling and routing decisions, determines when and where inter-session coding operations should be performed
to improve achievable throughput performance. Our solution applies both to the wired and wireless networks and is
shown to achieve any set of mean rates that lies inside the corresponding achievable rate regionΛ. In this paper, we
refrain from discussingΛ in depth, but provide its description as it pertains to our analysis in the appendix.

III. T HE BUTTERFLY NETWORK

We first describe our algorithm for the canonical butterfly network introduced in [2], depicted in Figure 1. This
allows us to explain the essential components of, and give general intuition for, our algorithm without complicated
notation. In Sections V, and VI, we extend our results to general wireline and wireless networks. Since theΛ region
is essentially obtained by decomposing a general wireline network into superimposed butterfly networks, a deep
understanding of the butterfly network is critical for the extension.

A. Achievable Rate Region

Suppose there are two unicast flows: Flow-f from nodeb to c′, i.e.,s(f) = b, andd(f) = c′; and Flow-g from node
b′ to c, i.e.,s(g) = b′, andd(g) = c. The exogenous arrivals for these flows have mean ratesλ(f) andλ(g) packets/slot,
respectively. Assuming that each available link(i, j) has capacityγ(i,j) = 1, Figure 1 describes the operation of inter-
session coding: packets from these two flows are mixed together using theXOR operation and “remedy” packets
are supplied to allow the coding operation to be undone and the independent flows recovered downstream. Notice
that when coding is not allowed, i.e. only routing is available, link (m, n) becomes the bottleneck link and the total
achievable rateλ(f) + λ(g) cannot exceed1 packet per slot.

4Similar to the channel state process case, it is possible to relax this assumption to cover general stationary and ergodic arrival processes by
extending the analysis of this paper to block of time slots (see e.g. [19]). We avoid such analysis for clarity.
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Fig. 1. The butterfly network. Flowsf andg begin at nodess(f) = b and s(g) = b′, respectively, and end at nodesd(f) = c andd(g) = c′,
respectively. A packetP1, from Flow f , is XORed with a packetP2, from Flow g, thus requiring only one “coded” packet to be sent over link
(m, n). In exchange, two “remedy” packets must be sent for decodingthe coded packet at the destinationsc andc′. In particular, remedy packet
P1 must be sent from nodeb to nodec and remedy packetP2 must be sent from nodeb′ to nodec′.

In the more general case of an ON/OFF channel with average link rateγ(i,j) ∈ [0, 1] for each available link(i, j),
the set of(λ(f), λ(g)) that are achievable by simple routing and coding strategiesare given next.

Proposition 1 (Butterfly Achievable Rate Region with Routing (ΓR
BF )): The achievable rate region of the butterfly

network with routing contains the set of all(λ(f), λ(g)) that satisfy:

λ(f) ≤ min(γ(b,m), γ(n,c′)), (1)

λ(g) ≤ min(γ(b′,m), γ(n,c)), (2)

λ(f) + λ(g) ≤ γ(m,n), (3)

λ ≥ 0. (4)
Proof: This result trivially follows from the max-flow-min-cut theorem, and is omitted for brevity.

ΓR
BF gives the largest set of mean flow rates that can be achieved with a routing strategy. When network coding is

allowed, the set of achievable(λ(f), λ(g)) increases as shown next.
Proposition 2 (Butterfly Achievable Rate Region with Coding(ΓC

BF )): The achievable rate region of the butterfly
network with coding contains the set of all(λ(f), λ(g)) that satisfy: for someλ(f,g), we have (1), (2), (4), and

λ(f) + λ(g) − λ(f,g) ≤ γ(m,n), (5)

λ(f,g) ≤ γ(b,c), (6)

λ(f,g) ≤ γ(b′,c′), (7)

0 ≤ λ(f,g) ≤ min(λ(f), λ(g)). (8)
Proof: We describe the need for each constraint. (1), (2), and (4) are as in the routing case. For decodability

at the destinations, for each coded packetP1 ⊕ P2, there must be a remedy packet transmitted over the side links.
Noting thatλ(f,g) captures the rate of coded packets generated at nodem, the side links must be able support this
rate, which is given in (6) and (7). That the rate of coded packets cannot be more than the rate of each flow is given
in (8). Finally, since over link(m, n) one coded packet is transmitted instead of two uncoded flow packets, the actual
rate of flow over it is given byλ(f) + λ(g) − λ(f,g), which leads to (5).
In the definition,λ(f,g) captures the flow rate of the coded packets generated at nodem. We illustrate the potential
gains of coding in a butterfly network with error-free links (i.e. γ(i,j) = 1 for all (i, j) ∈ E) in Figure 2. We can
observe that the set of arrival rates supportable with inter-session coding can be as large as twice of what can be
supportable with routing. In Section VII, we also depict theregions of an asymmetric case (cf. Figure 10).
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Fig. 2. Capacity regions of routing and coding for the butterfly network of Figure 1 with unit capacity links.

B. Dynamic Coding and Scheduling Algorithm

In the butterfly scenario of Figure 1, if the exogenous arrival rates(λ(f), λ(g)), the channel statistics and the complete
network topology were known at some centralized point, thenλ(f,g) in Proposition 2 could, in theory5, be found for
any (λ(f), λ(g)) in the achievable rate regionΓC

BF , thus allowing the rate pair to be achieved. In many network
settings, however,(λ(f), λ(g)) and the channel statistics are not known, and we moreover do not have a centralized
point with complete network information. Also, the arrivals and link states are stochastically varying. Therefore, we
wish to make decisions on coding, routing, and scheduling on-the-fly with decentralized operations. This is the type
of dynamic policy that we seek.

Intuitively, a good place to make the coding decision is at node m. If node m observes that its instantaneous
packet queue has many packets queued for Flow-f and many packets queued for Flow-g, then it is likely that nodem
represents a bottleneck. In this case, we could alleviate the congestion at nodem by coding, which introduces remedy
packets at nodeb andb′. We assume that nodem is capable of sending small,remedy request, protocol messages6 to
nodesb andb′, requesting that these additional packets be sent. If the links(b, c) and(b′, c′) are themselves congested,
however, it may not be a good idea for nodem to code. So it is not clear what the decision rule must be to exploit the
network coding advantage while guaranteeing decodabilityat the receivers and stability of the system. We propose a
dynamic algorithm that achieves this goal in the next section.

Next, we give a dynamic policy that yields coding decisions based on the occupancies of neighboring queues. These
queue-lengths must be maintained so that they serve as a measure of decodability of the coded packets.

Definition 2 (Dynamic Coding and Scheduling Algorithm for the Butterfly Network):At the beginning of slott, let
Q

(f)
k [t] be the number of uncoded Flow-f packets at nodek; let Q

rem(c)
k be the number of remedy packets destined

for nodec at nodek; and letQ(c,(c,c′))
k [t] be the number of coded packets destined for nodec at nodek. At each

time slot, Flow-f packets arrive at nodeb and are placed into queueQ(f)
b , and Flow-g packets arrive at nodeb′ and

are placed into queueQ(g)
b′ .

We consider each of the nodes in turn.

• Node b maintains two queues,Q(f)
b and Q

rem(c)
b , and its policy is straightforward: At each time slot, it uses

whatever capacity is available on link(b, m) to serveQ(f)
b , removing served packets from the queue and placing

them intoQ
(f)
m , and it uses whatever capacity is available on link(b, c) to serveQrem(c)

b , removing served packets
from the queue, which then reach their destination. The situation at nodeb′ is similar to that at nodeb.

• Noden maintains four queues,Q(f)
n , Q

(g)
n , Q

(c,(c,c′))
n , andQ

(c′,(c,c′))
n . It checks to see ifQ(g)

n or Q
(c,(c,c′))
n is

greater, and serves the greater of the two using whatever capacity it has on link(n, c); likewise, it checks to see
if Q

(f)
n or Q

(c′,{c,c′})
n is greater, and serves the greater of the two using whatever capacity it has on link(n, c′).

Nodesc andc′ are final destination nodes and do not maintain queues.

5This operation would become computationally complex as thesize of the network scales, quickly rendering it impractical.
6Note that these messages are simple signals much shorter than packet lengths. We assume that their consumption of link capacity is negligible.
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• The coding decision of nodem is based on

ρ(f)[t] ,

(

Q(f)
m [t] − Q(f)

n [t]
)

,

ρ(g)[t] ,

(

Q(g)
m [t] − Q(g)

n [t]
)

,

σ[t] ,

[

Q(f)
m [t] − (Q(c′,{c,c′})

n [t] + Q
rem(c′)
b [t])

]

+
[

Q(g)
m [t] − (Q(c,{c,c′})

n [t] + Q
rem(c)
b′ [t])

]

.

– If max
(

ρ(f)[t], ρ(g)[t], σ[t]
)

≤ 0, then no packet is served over link(m, n).

– Otherwise, ifσ[t] is greater thanmax(ρ(f)[t], ρ(g)[t]), then coding is performed: Nodem removes one packet
from Q

(f)
m and one packet fromQ(g)

m , forms a single coded packet from theXOR of the two, and transmits
the coded packet on link(m, n). If one of the queues is empty the other packet is coded with anall zero
packet, and if both queues are empty no packet is served over(m, n). Upon reception at noden, the coded
packet is placed into both queuesQ

(c,(c,c′))
n and Q

(c′,{c,c′})
n . As well as transmitting the coded packet on

link (m, n), nodem transmits two remedy request protocol messages, one tob and one tob′. These remedy
request protocol messages ultimately result in a remedy packet being placed into each queueQ

rem(c)
b and

queueQ
rem(c′)
b′ . Nodem repeatedly forms coded packets and sends remedy request protocol messages for

them for as much capacity is available on link(m, n) in time slot t.
– If eitherρ(f)[t] or ρ(g)[t] is greater thanσ[t], then simple routing instead of coding is performed. Specifically,

if ρ(f)[t] > ρ(g)[t], thenQ
(f)
m is served using all the available capacity of link(m, n), otherwiseQ

(g)
m is

served over link(m, n).

⋄

We can understand the policy employed on nodem as an extension ofdifferential backlog(see [16], [20], [19]):ρ(f)

andρ(g) give the traditional differential backlog associated withf andg, respectively, and the factorσ[t] represents
the differential backlog associated with coding. To calculate the latter correctly, we need to account for the following
two effects of coding: first, by coding, we effectively servetwo packets for the price of one, removing a packet from
bothQ

(f)
m andQ

(g)
m while transmitting only a single packet on link(m, n); second, we have to pay for this advantage

of coding with remedy packets, which create packets inQ
rem(c)
b and Q

rem(c′)
b′ , one for each flow. The first effect

causesQ(f)
m [t]−Q

(c′,(c,c′))
n to be summed withQ(g)

m [t]−Q
(c,(c,c′))
n when calculating the differential backlog, and the

second effect causesQrem(c)
b [t] andQ

rem(c′)
b′ [t] to be subtracted from the differential backlog, finally yielding σ[t] as

the correct differential backlog associated with coding.
Our main result, Theorem 1 in Section V, proves that the policy we describe above will stabilize all exogenous

arrival rates,λ(f) andλ(g), that lie strictly in the interior of the achievable rate region given in Proposition 2.

IV. T HE WIRELESSEXCHANGE NETWORK

In this section, we consider another special case. This special case relates to wireless networks and is relevant,
in particular, to COPE [9], a practical wireless network coding protocol that has shown significant performance
improvements over routing. Our approach not only establishes a theoretical framework for inter-session wireless
network coding, but also allows the intersession coding performed byCOPE to be generalized beyond a single hop.

Fig. 3. The wireless exchange network. Flow-f and Flow-g begin at nodess(f) = b and s(g) = b′, respectively, and end at nodesd(f) = b′

andd(g) = b, respectively. Further, Flow-h begins at nodes(h) = m and ends at noded(h) = b.
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A. Achievable Rate Region

The network we now consider is shown in Figure 3. This networkhas been considered in the context of physical
piggybacking [10] and has been referred to previously as themodified wireless butterfly network [1]. Here, we refer
to it as thewireless exchange network. The network consists of three links,(b, m), (b′, m) and(m, (b, b′)). The third
of the three links, represented by a hyperedge, is a broadcast link from nodem to nodesb andb′. For simplicity, we
assume that each link(i, J) has capacityγ(i,J) = 1, though it is equally valid for the capacities of the links tobe
dependent on each other if the wireless medium is not shared orthogonally.

In this network, we suppose there are three unicast flows: Flow-f from nodeb to b′, Flow-g from b′ to b, and
Flow-h from nodem to b. Flow-f and Flowg are information exchangeflows. Inter-session coding is performed by
mixing these two flows together with anXOR operation at nodem. This set-up is akin to a butterfly network where
no remedy packets are required because they are already available at the relevant destination nodes. Flow-h is a
cross-traffic flow that competes for resources with Flow-f and Flow-g. It is unimportant whether the destination of
Flow-h is b, b′, or both. Balancing the amount of resources given to Flow-h with those given to Flow-f and Flow-g
is of vital importance to performance in the wireless exchange network, and we will see that our approach leads
naturally to a fair policy for balancing these flows. The following two propositions follow as in Section III-A.

Proposition 3 (Wireless Exchange Achievable Rate Region with Routing (ΓR
WE)): The achievable rate rregion of the

wireless exchange network with routing contains the set of all (λ(f), λ(g), λ(h)) that satisfy:

λ(f) ≤ γ(b,m), (9)

λ(g) ≤ γ(b′,m), (10)

λ(f) + λ(g) + λ(h) ≤ γ(m,(b,b′)), (11)

λ ≥ 0. (12)
Proposition 4 (Wireless Exchange Achievable Rate Region with Coding (ΓC

WE)): The achiveable rate region of the
wireless exchange network with coding contains the set of all (λ(f), λ(g), λ(h)) that satisfy: for someλ(f,g), we have
(9), (10), (12), and

λ(f) + λ(g) + λ(h) − λ(f, g) ≤ γ(m,(b,b′), (13)

0 ≤ λ(f,g) ≤ min(λ(f), λ(g)). (14)

B. Dynamic Coding and Scheduling Algorithm

Definition 3 (Dynamic Coding and Scheduling Algorithm for the Wireless Exchange Network):As with Definition 2,
let Q

(f)
k be the number of Flow-f packets at nodek at the beginning of slott. At each time slot, Flow-f packets

arrive at nodeb and are placed into queueQ(f)
b , Flow-g packets arrive at nodeb′ and are placed into queueQ(g)

b′ , and
Flow-h packets arrive at nodem and are placed into queueQ(h)

m .
Each node applies the following policy.

• Nodesb andb′ each serve packets on their queues according to the available capacity on their respective outgoing
links, removing served packets from their queues and placing them onto the corresponding queue at nodem.

• Nodem calculates the following:

ρ(h)[t] , Q(h)
m [t],

σ[t] ,

(

Q(f)
m [t] − Q

(f)
b [t]

)

+
(

Q(g)
m [t] − Q

(g)
b′ [t]

)

.

– If σ[t] > ρ(h)[t], then coding is performed as described in Definition 2. If either Q
(f)
m or Q

(g)
m is zero, then

packets from the non-empty one of the two queues is sent.
– Otherwise,Q(h)

m is served using all the available capacity of link(m, (b, b′)).
Thus, nodem maintains three queues, namely,Q

(f)
m , Q

(g)
m , andQ

(h)
m , and decides whether or not to perform coding

based on the length of these three queues.COPE in fact uses a very similar policy, but it instead maintains asingle
queue and always serves the head-of-line packet, coding it with other packets with possible.
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Using similar arguments as those employed in Theorem 1, we can show that the policy described in Definition 3
will stabilize all exogenous arrivalsλ(f), λ(g) and λ(h) that lie strictly in the interior of the achievable rate region
given in Proposition 4.

V. GENERAL WIRELINE NETWORKS

In Section III, we considered the canonical butterfly network. In this section, we extend the algorithm to be
implemented in more general networks, and prove its stabilizing properties. For general wireline networks, we can
consider superimposing or overlaying butterfly networks into the network to extend the butterfly network case. In
general, this kind of superimposing of butterfly networks will not achieve the capacity region, but it will expand
the region that is achievable by routing. In Appendix I, we describe such an achievable rate region,Λ, obtained by
superimposing butterfly networks as introduced by Traskov et al. [11]. We note thatΛ essentially considers all possible
ways in which butterfly networks can appear in a general wireline network, and, for each butterfly network, it allows
a coded packet to be transmitted on the center link (or path) as long as remedy packets are transmitted on the side
links (or paths).

A. Dynamic Routing-Scheduling-Coding Algorithm

Recall that flowf ∈ F originates at nodes(f) and is destined to noded(f) (see Figure 4 for an example). We
assume that associated with each flow, sayf, there is a fixed route withNf andEf that respectively denotes the set
of nodes and the set of links that the flow traverses. For each node k on the route of flowf, we let U (f)

k denote
the set of upstream nodes visited by Flow-f packets before they arrive atk, andD(f)

k denote the downstream nodes
that Flow-f packets will traverse afterk. Also, we letpt(f)(k) andch(f)(k) denote the immediate parent and child,
respectively, of nodek on the route of Flow-f .

Fig. 4. Flow-f goes froms(f) to d(f) and Flow-g goes froms(g) to d(g), both traversing link(m,n). The dashed lines indicate
simple paths composed of multiple links; the dash-dotted lines indicate potentially multiple simple paths between itsend points;
and the dotted lines indicate end-to-end communication, possibly over a general subgraph rather than a tree. A decisionto perform
inter-session coding across flowsf and g over link (m, n) with remedy nodes (b, b′) and decoding nodes (c, c′) results in: two
unicast sessions for remedy packets [b → c andb′ → c′] whose routes are to be dynamically constructed; and one multicast session
[n → {c, c′}] over a subgraph to be dynamically constructed.
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Next, we introduce some new notation to distinguish different service types and a queueing architecture to be used
in the algorithm.
Notation for Service Processes: Recall that, when it is ON each link(m, n) ∈ E can serve a single packet in every
time slot. We distinguish the different types of service on alink as follows:

• S
(f)
(m,n)[t] : Number of uncoded Flow-f packets served over(m, n) ∈ Ef , in slot t.

• S
rem(c)
(m,n) [t] : Number of remedy packets served over link(m, n) ∈ E in slot t that are destined to nodec.

• S
((f,g),(c,c′))
(m,n) [t] : Number of intra-session coded(f, g) packets that are multicast to the destination set(c, c′).

• S
((f,g),(b,b′),(c,c′))
(m,n) [t] : Number of newly inter-session coded(f, g) packets served over(m, n) ∈ E in slot t that

originate from(b, b′) and are destined for nodes(c, c′).

Notice thatS(·)
· [t] denotes the actual amount of service provided, not the offered service, which may be larger due

to the unavailability of packets. To distinguish, we will use M
(·)
· [t] for the offered service with the same subscript-

superscript convention used forS
(·)
· [t]. Since there will be a single packet transmission in every ONchannel state

over link (m, n), the vector of offered servicesM[t] must satisfy: for each link(m, n) ∈ E , we have
∑

f

M
(f)
(m,n)[t] +

∑

c

M
rem(c)
(m,n) [t] +

∑

(f,g),(c,c′)

M
((f,g),(c,c′))
(m,n) [t] +

∑

(f,g),(b,b′),(c,c′)

M
((f,g),(b,b′),(c,c′))
(m,n) [t] ≤ C(m,n)[t], (15)

which merely states that the available capacityC(m,n)[t] over link (m, n) in slot t must be divided to serve uncoded,
remedy, intra/inter-session coded packets.
Queueing Architecture: We propose the following queueing architecture to be used in our algorithm:

• Q
(f)
j : The queue at nodej that holds uncoded Flow-f packets.

• Q
rem(c)
j : The queue at nodej that holds remedy packets destined to nodec.

• Q
(c,(f,g),(c,c′))
j : The queue at nodej that holds coded(f, g) packets destined toc in the pair(c, c′).

Then, the evolution of these queues’ sizes can be described by (all the unspecified queue-lengths are always zero):

Q
(f)
j [t + 1] = Q

(f)
j [t] + A

(f)
in(j)[t] + Y

(f)
in(j)[t] + S

(f)
in(j)[t] − S

(f)
out(j)[t], ∀j ∈ Nf\d(f) (16)

Q
rem(c)
j [t + 1] = Q

rem(c)
j [t] + X

rem(c)
in(j) [t] + S

rem(c)
in(j) [t] − S

rem(c)
out(j) [t], ∀j 6= c (17)

Q
(c,(f,g),(c,c′))
j [t + 1] = Q

(c,(f,g),(c,c′))
j [t] + S

(c,(f,g),(c,c′))
in(j) [t] − S

(c,(f,g),(c,c′))
out(j) [t], ∀f, g ∈ F , andc ∈ Ng, c

′ ∈ Nf ,(18)

whereA
(f)
in(j)[t] := A(f)[t]Ij=s(f), with IE representing the indicator of eventE, denotes the exogenous arrivals of

flow f packets into nodej;

Y
(f)
in(j)[t] :=

∑

i:(i,j)∈E

∑

g∈F

∑

c′∈Ng

S
((f,g),(j,c′))
(i,j) [t]

denotes the number of(f, g) packets entering nodej that are multicast for decoding at nodes(j, c′) due to an
intersession operation performed at an upstream node (in particular, nodej will recover the flowf packet and place
it into Q

(f)
j ; and nodec′ will recover the flowg packet and place it intoQ(g)

c′ ); S
(f)
in(j)[t] := S(pt(f)(j),j)[t] denotes the

number of flowf packets that nodej receives from its parent node;

S
(f)
out(j)[t] := S(j,ch(f)(j))[t] +

∑

{g∈F :j∈Ng}

∑

{k:(j,k)∈Ef∩Eg}

∑

b∈U
(f)
j

∑

b′∈U
(g)
j

S
((f,g),(b,b′),(c,c′))
(j,k) [t]

denotes the total number of flowf packets served at nodej with the first term counting the number of flowf packets
that are forwarded by nodej to its child node and the second multiple sum counting the inter-session coded packets
that are newly generated atj and forwarded to its child node.;

X
rem(c)
in(j) [t] :=

∑

{f∈F :j∈Nf}

∑

m∈D
(f)
j

∑

{g∈F :(m,ch(f)(m))∈Eg}

∑

b′∈U
(g)
m

∑

c′∈D
(f)

ch(f)(m)

S
((f,g),(j,b′),(c,c′))

(m,ch(f)(m))
[t]
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denotes the number of remedy packets newly generated at nodej due to intersession coding operations at one of its
downstream nodes;

S
rem(c)
in(j) [t] :=

∑

i:(i,j)∈E

S
rem(c)
(i,j) [t]

denotes the number of remedy packets that are indigenously routed from a neighbor ofj into j;

S
rem(c)
out(j) [t] :=

∑

k:(j,k)∈E

S
rem(c)
(j,k) [t]

denotes the number of remedy packets that are indigenously routed fromj to a neighbor ofj;

S
(c,(f,g),(c,c′))
in(j) [t] :=

∑

i:(i,j)∈E

S
((f,g),(c,c′))
(i,j) [t] +

∑

{i:(i,j)∈Ef∩Eg}

∑

b∈U
(f)
i

∑

b′∈U
(g)
i

S
((f,g),(b,b′),(c,c′))
(i,j) [t]

denotes the number of(f, g) coded packets entering nodej with the first sum counting the number of intra-session
coded packets enteringj and the second multiple sum counting the inter-session coded packets enteringj that are
newly generated at its neighbors;

S
(c,(f,g),(c,c′))
out(j) [t] :=

∑

k:(j,k)∈E

S
((f,g),(c,c′))
(j,k) [t]

denotes the number of(f, g) intra-session coded packets leaving nodej. We note that, while the routes of the original
flows are fixed, the routes for the remedy packets are established dynamically by the algorithm we will propose.

We now describe our policy for performing routing, scheduling, and coding decisions for each link. The intuition
behind the policy is that it uses the knowledge of queue-lengths to decide whether coding operations are feasible.
Also, compared to the algorithm of Definition 2, this algorithm must also dynamically find routes for the remedy
packets.

Definition 4 (Routing-Scheduling-Coding (RSC) Algorithm): At every time slott, for each link(m, n) ∈ E with an
ON state, four sets of weights, provided next, are computed at nodem as simple functions of queue-lengths: the first
two corresponding to the routing of original flows and the remedy flows, respectively; and the last two corresponding
to intra and inter-session coding operations, respectively.

ρ
(f)
(m,n)[t] ,

(

Q(f)
m [t] − Q(f)

n [t]
)

, ∀f ∈ {f ∈ F : (m, n) ∈ Ef}, (19)

ξ
rem(c)
(m,n) [t] ,

(

Qrem(c)
m [t] − Qrem(c)

n [t]
)

, ∀c ∈ N\{m}, (20)

χ
((f,g),(c,c′))
(m,n) [t] ,

[

Q(c,(f,g),(c,c′))
m [t] −

(

Q(c,(f,g),(c,c′))
n [t] + Q(g)

n [t]In=c

)]

(21)

+
[

Q(c′,(f,g),(c,c′))
m [t] −

(

Q(c′,(f,g),(c,c′))
n [t] + Q(f)

n [t]In=c′

)]

, ∀f, g ∈ F ; c ∈ Ng; c
′ ∈ Nf ,

σ
((f,g),(b,b′),(c,c′))
(m,n) [t] ,

[

Q(f)
m [t] −

(

Q(c′,(f,g),(c,c′))
n [t] + Q

rem(c)
b [t]

)]

(22)

+
[

Q(g)
m [t] −

(

Q(c,(f,g),(c,c′))
n [t] + Q

rem(c′)
b′ [t]

)]

,

∀f, g ∈ F ; b ∈ U (f)
m ; c′ ∈ D(f)

n ; b′ ∈ U (g)
m ; c ∈ D(g)

n .

Here,ρ(f)
(m,n)[t] represents the weight associated with serving uncoded packets of flowf over link (m, n); ξ

rem(c)
(m,n) [t]

represents the weight associated with serving remedy packets over(m, n) that are destined to nodec; χ
((f,g),(c,c′))
(m,n) [t]

represents the weight associated with performing intra-session coding between already coded(f, g) packets with
destination pair(c, c′); andσ

((f,g),(b,b′),(c,c′))
(m,n) [t] is the weight associated with performing intersession coding between

f and g packets with remedies created at(b, b′), and decoding to be performed at(c, c′) (see Figure 4). Also, we
introduce the following notation to denote the maximum weight for each category and the maximizing parameters.
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ρ⋆
(m,n)[t] , max

f∈F
ρ
(f)
(m,n)[t],

f⋆
(m,n)[t] , arg max

f∈F
ρ
(f)
(m,n)[t],

ξ⋆
(m,n)[t] , max

c∈N
ξ

rem(c)
(m,n) [t],

c⋆
(m,n)[t] , arg max

c∈N
ξ

rem(c)
(m,n) [t],

χ⋆
(m,n)[t] , max

((f,g),(c,c′))
χ

((f,g),(c,c′))
(m,n) [t],

((f, g)⋆, (c, c′)⋆)(m,n)[t] , argmax
((f,g),(c,c′))

χ
((f,g),(c,c′))
(m,n) [t],

σ⋆
(m,n)[t] , max

((f,g),(b,b′),(c,c′))
σ

((f,g),(b,b′),(c,c′))
(m,n) [t],

((f, g)⋆, (b, b′)⋆, (c, c′)⋆)(m,n)[t] , argmax
((f,g),(b,b′),(c,c′))

σ
((f,g),(b,b′),(c,c′))
(m,n) [t],

Let us denote7 the overall weight of link(m, n), denotedω⋆
(m,n)[t] as the maximum of these four weights, i.e.,

ω⋆
(m,n)[t] , max

(

ρ⋆
(m,n)[t], ξ

⋆
(m,n)[t], χ

⋆
(m,n)[t], σ

⋆
(m,n)[t]

)

.

The final decision of which packet to transmit over(m, n) is given based on the maximizer of this expression, where
potential ties between these cases are broken uniformly at random. In particular, we have five cases:

• DO NOT SERVE ANY PACKET: If ω⋆
(m,n)[t] ≤ 0, then do not serve any packet over link(m, n) in slot t.

• SERVE AN UNCODED PACKET: If ω⋆
(m,n)[t] = ρ⋆

(m,n)[t], then transmit the Head-of-Line (HOL) packet of the

queueQ
(f⋆

(m,n)[t])
m . If there are no packets in that queue, do not transmit. In other words, setM

(f⋆
(m,n)[t])

(m,n) [t] = 1.

• SERVE A REMEDY PACKET: If ω⋆
(m,n)[t] = ξ⋆

(m,n)[t], then transmit the HOL packet of the queueQ
rem(c⋆

(m,n)[t])
m .

If there are no packets in that queue, do not transmit. In other words, setM
rem(c⋆

(m,n)[t])

(m,n) [t] = 1.

• SERVE AN INTRA-SESSION CODED PACKET: If ω⋆
(m,n)[t] = χ⋆

(m,n)[t], then perform random linear network coding

on the HOL packets of the queuesQ
((c)⋆

(m,n),((f,g)⋆,(c,c′)⋆)(m,n)[t])
m andQ

((c′)⋆
(m,n),((f,g)⋆,(c,c′)⋆)(m,n)[t])

m and transmit
the resulting packet. If one of the queues is empty, then transmit the HOL packet of the other queue without

coding. If both queues are empty, do not transmit. This equivalent to settingM
(((f,g)⋆,(c,c′)⋆)(m,n)[t])

(m,n) [t] = 1.

• SERVE AN INTER-SESSION CODED PACKET: If ω⋆
(m,n)[t] = σ⋆

(m,n)[t], then XOR the HOL packets of the queues

Q
(f)⋆

(m,n)
m and Q

(g)⋆
(m,n)

m , transmit the resulting packet to be destined to(c, c′)⋆
(m,n)[t], and signal the node pair

(b, b′)⋆
(m,n)[t] to generate the remedy packets to be transmitted from(b)⋆

(m,n)[t] to (c)⋆
(m,n)[t] for flow (f)⋆

(m,n)[t]

and from (b′)⋆
(m,n)[t] to (c′)⋆

(m,n)[t] for flow (g)⋆
(m,n)[t]. If any one of the two queues is empty, perform the

encoding with adummypacket whose content is all zeros. If both queues are empty, do not transmit. This

corresponds to settingM
((f,g)⋆,(b,b′)⋆,(c,c′)⋆)(m,n)[t]

(m,n) [t] = 1.

This completes the description of theRSC Algorithm. ⋄

Notice that theRSC Algorithm inherits the essential characteristics of the algorithm for the butterfly network
described in Definition 2. In particular, it utilizes a form of differential backlog expressions to decide whether to
perform coding or just routing. The differential backlog expressions indicate the success of prior decisions and hence
determine whether the link should continue performing those decisions. However, theRSC Algorithm also possesses
new components that do not appear in the butterfly setting. Next, we comment on the key differences:

• In the butterfly network, the routes of the remedy packets were fixed due to the knowledge of the topology. In
the general network topology, these routes need to be dynamically established in an optimal fashion. To that end,
the queueing architecture is designed to distinguish original flow packets with fixed routes from remedy packets
without known routes.

• In the butterfly network (see Figure 1), the candidate remedynodes, i.e.(b, b′), and decoding nodes, i.e.(c, c′),

are apriori known, which obviates the need for a wider searchof butterfly structures. In a general multihop
network, the optimal choice of remedy and decoding nodes areto be selected. Figure 4 reveals the possibility
of having remedy and decoding nodes other than at the source and destination nodes. Thus, theRSC Algorithm
also contains rules for the optimal selection of remedy and decoding nodes.

• In the butterfly network, there is no need to consider the possibility of intra-session network coding since the
paths of the(f, g) coded packets from noden to the two destinations(c, c′) are fixed and disjoint (cf. Figure 1).

7We also note that potential ambiguity between the notationsf⋆

(m,n)
and c⋆

(m,n)
will be avoided by always usingf, g for flows andc, c′ for

the destination of remedy packets.
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In the general scenario, the subgraph to support the multicast session fromn to (c, c′) (cf. Figure 4) must
be dynamically established and is not necessarily a tree with disjoint paths. As the(f, g) coded packets with
destinations(c, c′) traverse the network, intra-session coding operations need to be performed across them in
order to exploit the network coding advantage within a multicast session. Thus, theRSC Algorithm also contains
rules for such decisions.

In the next section, we will show that the achievable rate region of our RSC Algorithm containsΛ described by
Definition 5 in Appendix I, i.e., it stabilizes all the queuesas long as the mean flow arrival rates lie insideΛ.

B. Stochastic Analysis

The main result of this paper is provided in the following theorem, which establishes that ourRSC Algorithm
stabilizes the network queues for any throughput withinΛ by dynamically searching for butterfly opportunities.

Theorem 1:Let F denote the set of unicast flows that enter at nodes(f) ∈ N and that are destined to node
d(f) ∈ N for eachf ∈ F . We assume that associated with each flow, sayf, there is a fixed route withNf andEf

that respectively denotes the set of nodes and the set of links that the flow traverses. Associated with each flowf , there
is an arrival process{A(f)[t]}t that is assumed to be i.i.d overt with mean{λ(f)}f and bounded second moment.
Also, assume that for someε > 0, the set of mean flow rates{λ(f)}f are such that{λ(f) + ε}f lies in the rate region
Λ that is described in Definition 5 (see Appendix I). Then the system under theRSC Algorithm (Definition 4) is stable.

Proof: The proof of the above theorem is given in the Appendix III.
Next, we remark on the nature ofRSC Algorithm as it relates to earlier dynamic algorithms, and discuss several issues
related to the practical implementation of the policy.

• In the proposed policy, the link weights(ω⋆
(m,n)[t])(m, n) is a substantial generalization of the concept of

differential backlogintroduced in [16]. In many earlier works (e.g. [16], [28], [29], [30], [21], [31], [22]), which do
not consider inter-session coding possibilities, this term dynamically establishes routes by steering packets in the
largest differential backlog direction. However, the availability of inter/intra-session coding decisions necessitates a
novel improvement to the link weight definition that provides significant insight. In particular, the proposed weight
computation contains two new differential backlog terms computed in (21) and (22) that respectively measure
the decodability of intra-session and inter-session codedpackets that traverse link(m, n). This improvement also
marks a drastic conceptual novelty: that properly maintained queue-lengths not only measures congestion levels,
but can also measure sophisticated constraints such as end-to-end decodability.

• The policy requires the knowledge of the occupancy levels ofthose nodes at which decoding and remedy
packet generation is to be performed. In practice, such information may be available only for those nodes in
a local neighborhood of each node. Also, the search space of possible remedy and decoding nodes scales as
O(m4), wherem is the number of potential nodes in the decision space. Although the performance of the
policy will improve as the span of the search space increases, it has been observed in empirical studies [32]
that even a one-hop neighborhood knowledge and search improves the achievable throughput considerably. Our
model is general enough to accommodate the extreme scenarios of more practical implementation with weaker
but still good performance, and less practical implementation with better performance. We also note that the
complexity associated with the maintenance of the proposedmulti-dimensional queueing architecture and the
overhead associated with the dissemination of relevant queue-length information also arise in earlier dynamic
policies that do not exploit inter-session coding opportunities (e.g. [16], [28], [29], [30], [21], [31], [22]). In
this sense, our policy expands the policy space of dynamic policies in an orthogonal dimension to provide a
means of using appropriate queue-length information to capture inter-session coding opportunities. Accordingly,
the improvements in complexity (e.g. [21], [33]) that have been suggested for earlier dynamic policies are also
applicable to our policy.

• It is well-known that adaptive routing capability of queue-length-based policies may cause large delays, especially
for under-loaded networks as packets incessantly seek new routes to the destinations while the queues do not
grow sufficiently to accurately indicate the congestion levels to the destinations. In our setup, we have assumed
the presence of fixed routes for unicast flows, which partially prevents the complications associated with this
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issue. Specifically, when the load of the network is low, routing over the given fixed routes will suffice to support
the traffic, hence avoiding extra delay associated with dynamic routing. Only when the load exceeds the level
supportable by routing will inter-session coding be performed, and dynamic routing for remedy flows and inter-
session coded flows will be needed. Fortunately, in this regime, the recent developments (e.g. [34], [35], [36])
that yield delay-aware dynamic routing for queue-length-based policies are directly applicable. Thus, similar to
the complexity issue, the delay issue associated with dynamic policies appears orthogonal to the inter-session
coding capabilities investigated in this work.

VI. GENERAL WIRELESSNETWORKS

In this section, our goal is to provide the essential elements in the extension of ourRSC algorithm together with
the corresponding stability analysis. It will be seen that our approach can easily be extended to cover the challenging
scenario of wireless communication. For wireless networks, the characterization ofΛ is given in Appendix II (see
Definition 6).

A. On the Dynamic Algorithm Description and Analysis

In the wireless case, we modify theRSC algorithm, as specified by Definition 4, as follows. For each hyperedge,
(m, N) ∈ E , we compute the following weights:

ρ
(f)
(m,N)[t] ,

(

Q(f)
m [t] − Q(f)

n [t]
)

I(m,n)∈N , ∀f ∈ {f ∈ F : (m, n) ∈ Ef}, (23)

ξ
rem(c)
(m,N) [t] ,

(

Qrem(c)
m [t] − min

(m,n)∈N
Qrem(c)

n [t]

)

, ∀c ∈ N\{m}, (24)

χ
((f,g),(c,c′))
(m,N) [t] ,

∑

(m,n)∈N

[

Q(c,(f,g),(c,c′))
m [t] −

(

Q(c,(f,g),(c,c′))
n [t] + Q(g)

n [t]In=c

)]

(25)

+
[

Q(c′,(f,g),(c,c′))
m [t] −

(

Q(c′,(f,g),(c,c′))
n [t] + Q(f)

n [t]In=c′

)]

, ∀f, g ∈ F ; c ∈ Ng; c
′ ∈ Nf ,

σ
((f,g),(b,b′),(c,c′))
(m,N) [t] ,

∑

(m,n)∈N

[

Q(f)
m [t] −

(

Q(c′,(f,g),(c,c′))
n [t] + Q

rem(c)
b [t]

)]

(26)

+
[

Q(g)
m [t] −

(

Q(c,(f,g),(c,c′))
n [t] + Q

rem(c′)
b′ [t]

)]

,

∀f, g ∈ F ; b ∈ U (f)
m ; c′ ∈ D(f)

n ; b′ ∈ U (g)
m ; c ∈ D(g)

n .

The definitions forρ⋆
(m,N), ξ

⋆
(m,N), χ

⋆
(m,N) andσ⋆

(m,N) are similar to those in Section V-A. In addition, let

W(m,N)[t] , max
(

ρ⋆
(m,N)[t], ξ

⋆
(m,N)[t], χ

⋆
(m,N)[t], σ

⋆
(m,N)[t]

)

denote the weight of the hyperedge(m, N), and find hyperedge rate vectorM⋆[t] every time-slot such that

M⋆[t] ∈ arg max
M[t]∈Θ

∑

(m,N)∈E

M(m,N)[t]W(m,N)[t]. (27)

This corresponds to picking the maximum weight hyperedge rates with respect to the weightsW[t] from within the
set of feasible hyperedge ratesΘ available in that time slot. Depending on the weights, inter-session coding is or is
not performed according to Definition 4. In wireless networks, however, we generally cannot assume that one packet
is transmitted on every link. Rather,M⋆

(m,N)[t] packets are transmitted on link(m, N).
Solving (27) exactly to determineM⋆

(m,N)[t] may in general be difficult. The structure ofΓ[t] is determined by
how the physical layer of the wireless network is implemented, and it may be difficlt to compute (27) or even to
know Γ[t]. There are numerous distributed methods that can be used to reduce the complexity associated with this
optimization while sacrificing from rate-of-convergence and/or maximal throughput performance (see e.g. [21], [37],
[38], [39], [40], [41], [42]). These mechanisms can directly be applied to our setting to enable the practical use of
our RSC algorithm in wireless networks.

The analysis of theRSCalgorithm for wireless networks proceeds along the same lines as that for wireline networks,
whereby we use the achievable rate regionΛ given by Definition 6 in Appendix II to show that the mean driftof a
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quadratic Lyapunov function is negative outside a bounded set of queue states. The details of this derivation is omitted
since it does not add any new insight.

VII. S IMULATIONS

In this section, we provide simulations of our dynamic routing-scheduling-coding strategy when implemented in
the butterfly network of Figure 1 and the wireless multi-hop butterfly shown in Figure 7. In both the networks, two
flows, namelyf andg, share the resources of the network: Flowf enters the network at nodeb destined forc′; Flow
g enters the network at nodeb′ destined forc (see Figures 1 and 7). In the simulations, we set the number ofarrivals
for flows f andg to be Poisson distributed with meansλ(f) andλ(g), respectively, in each time slot. Also, the link
states are taken to be Bernoulli distributed with meanγ(m,n) for link (m, n) ∈ E .

Our goals are: to confirm the stabilizing nature of our algorithm as suggested by our stochastic analysis; to investigate
the throughput gains of inter-session coding to traditional routing-scheduling strategies by comparing our RSC with
traditional back-pressure (BP) strategies; and to observethe adaptive nature of our RSC algorithm in making routing
and coding decisions by using queue-length information. Using the multi-hop wireless butterfly (see Figure 7), we
also demonstrate the local coding capability ofCOPE as opposed to a wider coding ability ofRSC scheme leading
to the RSC strategy potentially supporting a larger throughput region. To address these issues, we provide a set of
simulations under different scenarios.

a) Error-free Butterfly:We first consider the scenario of the butterfly with no link failures. For this case, we can
see from Definition 1 that we have

ΓR
BF = {λ(f) ≥ 0, λ(g) ≥ 0 : λ(f) + λ(g) ≤ 1}.

Similarly, from Definition 2, we have

ΓC
BF = {λ(f) ≥ 0, λ(g) ≥ 0 : λ(f) ≤ 1, λ(g) ≤ 1}.

These regions are depicted in Figure 2. To facilitate illustrations, we present the simulation results for the symmetric
arrival scenario whereλ(f) = λ(g) = λ for varying values ofλ ∈ (0, 1). It is well-known (see, for example, [43],
[28], [19]) that traditional back-pressure (BP) policy stabilizes its queues for any arrival rate that lies strictly within
ΓR

BF , and hence is calledthroughput-optimalin this sense. However, the BP policy only makes scheduling and routing
decisions using the differential backlog parameterρ of Section III, and does not allow coding operations. Therefore,
BP cannot stabilize arrival rates that lie insideΓC

BF \Γ
R
BF .
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Fig. 5. Mean total queue-length under RSC and BP policies for
the butterfly network with symmetric arrivals.
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Fig. 6. Mean rate of flow allocated to routing and coding decisions
at nodem for the butterfly network of Figure 1.

In Figure 5, we plot the mean total queue-length levels of theBP and RSC policies for varying values ofλ. This
simulation also confirms the throughput-optimality of our RSC policy for the butterfly network with the ability of
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coding. For the RSC policy, it is interesting to study the average flow rate over link(m, n) that is allocated to Flow
f and Flowg packets as well as codedf ⊕ g packets. This is shown in Figure 6. We observe that the rate allocated
to coded packets gradually increase asλ increases, while the pure routing decisions occur at a decreasing rate. These
simulations show that RSC dynamically takes advantage of the coding capability as the load of the system increases,
while BP suffers from the inability to perform coding.

b) Error-free Multi-hop Wireless Butterfly:We consider the error-free multi-hop wireless butterfly shown in
Figure 7, where the hyperlink(n, {c, c′}) is a broadcast link. To capture wireless communication limitations, we
assume a primary interference model where no node can receive and transmit simultaneously in any given time slot
and adjacent links cannot be active simultaneously in any given time slot. We assume that nodesc and c′ cannot
overhear the transmissions of nodesb and b′. Hence, underCOPE, noden cannot perceive the coding opportunity
and simply performs routing. However, underRSC strategy, coding occurs at nodem which actively sends remedy
requests to nodesb and b′, forcing the discovery of alternative multi-hop remedy routes to the destinations. Hence,
the remedy packets are routed to nodesc and c′ via nodesp and q. This leads to a higher throughput region under
the RSC strategy as seen in the Figure 8.

Fig. 7. The multi-hop wireless butterfly. Flowsf and g begin
at nodess(f) = b and s(g) = b′, respectively, and end at nodes
d(f) = c′ and d(g) = c, respectively. Coding occurs at nodem

and coded packets are broadcasted by noden to nodesc andc′
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Fig. 8. Mean total queue-length under RSC and COPE policies for
the multi-hop wireless butterfly network with symmetric arrivals

c) Error-free Skeleton of the Butterfly:Next, we consider theskeleton of the butterfly networkwhere the side-
links (b, c) and(b′, c′) in Figure 1 are completely disconnected, i.e.γ(b,c) = γ(b′,c′) = 0, while all the other links of the
butterfly network are fully connected. This is an extreme scenario where the capacity regions of routing and coding are
equal. Thus, network coding should not be performed at nodem, since there exist no side links to convey the remedy
packets necessary for decoding. Therefore, RSC is expectedto adaptively stop coding and limit its transmissions to
uncoded packets. This is exactly what we observe in Figure 9,which depicts the decision rule for the skeleton of the
buttefly with varying symmetric arrival rates. We observe that nodem does not perform any coding operations and
RSC achieves stability for rates inside the capacity regionof the skeleton of the butterfly. A similar example can be
easily constructed in the wireless butterfly scenario with similar performance.

d) Asymmetric Butterfly with errors:Up to now, we considered purely ON or OFF link qualities. In the following
simulation, we considerγ values that lie between0 and1. An interesting scenario is when link qualities and arrival
rates are asymmetric. To that end, we assume the following link rates for the butterfly network of Figure 1:γ(b′,m) =

γ(n,c) = 3/4, γ(b,m) = γ(n,c′) = 1/2, γ(b,c) = 3/4, γ(b′,c′) = 1/3, andγ(m,n) = 2/3. Notice that the coded flow
rate over link(m, n) is limited by the link rateγ(b′,c′) = 1/3. For this set of mean link rates, the capacity regions of
routing and coding as described in Definitions 1 and 2 are depicted in Figure 10.

For this asymmetric network, we let(λ(f), λ(g)) = (1/3, 1/2), which is a rate that cannot be supported by mere
routing. Figure 11 depicts the running average of the total queue-length levels in the system when our RSC algorithm
is active, which shows that RSC quickly stabilizes the network queues. More interestingly, Figure 12 depicts the
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running average of the rate of service provided to routing ofthe individual flows and the coded packets. We see that
the RSC algorithm automatically converges to the routing/coding rates necessary to support the incoming traffic. This
confirms the adaptive nature of the algorithm.

VIII. C ONCLUSIONS ANDDISCUSSIONS

In this paper, we have introduced a dynamic routing-scheduling-coding strategy for inter-session network coding,
which can be seen both as a generalization of dynamic routing-scheduling strategies based on differential backlog
(e.g. [16], [20], [19]) and as an extension ofCOPE [9]. Our strategy decides whether independent flows should be
coded together at a node and, if so, where and how. We did not consider allowing for coding operations that involve
more than two flows at a time, but generalizing the ideas of this paper to allow for such coding operations is, at least
conceptually, not difficult.

Our main result was to show that this strategy, called theRSC algorithm, stably supports any throughput that lies
strictly within a known achievable rate region,Λ. Uncharacterized rate regions may simply have to be accepted to
proceed with inter-session coding in a meaningful way sincethe general rate region for inter-session coding is shown
to be very difficult to characterize [8], [44], and attempts to describe rate regions, such asΛ, have not yielded the
gains observed in empirical studies (e.g., [9]). In this work, we have described a policy rather than a region, and it
may be that any accurate characterization of achievable rates—especially in scenarios pertinent to practice—will have
to come from practical implementations. TheRSC algorithm, at any rate, is grounded in a solid theoretical framework
and generalizes empirically studied strategies, such asCOPE.

This work opens up numerous interesting avenues for future research. One immediate extension concerns the
availability of multiple routes between the unicast source-destination pairs, which is a relatively easy extension. Another
direction is the possibility of multi-cast sessions ratherthan unicast sessions. It is not difficult to see that ourRSC

algorithm can be easily extended to allow such multicasting. The performance analysis can also be performed along
the same lines of argument once the achievable rate regionΛ is characterized for this scenario. In the backpressure
literature, a direct connection has been identified (e.g. [21], [29]) between queue-lengths and congestion prices (or
Lagrange multipliers of an associated optimization problem). It is of interest to identify such a connection between
the extended version of queues that we introduced in this work and appropriately defined prices.
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APPENDIX I
ACHIEVABLE RATE REGION FORGENERAL WIRELINE NETWORKS

An achievable rate region for serving unicast traffic in a general network topology when inter-session linear coding
is allowed has been described by Traskov et al. [11]. This region is obtained by exploiting coding opportunities of the
“butterfly” type discussed in the previous section. The achievable rate regionΛ for wireline networks is as follows.

Definition 5 (Λ for wireline networks):Assume that we are given a wireline networkG = (N , E), a set of average
link capacities{γ(i,j)}(i,j)∈E , and a setF of flows with a beginning nodes(f) ∈ N and a destination noded(f) ∈ N

for flow f ∈ F . We assign an arbitrary ordering to the flows inF . Then,Λ is the set of unicast flow rates{λ(f)}f∈F
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satisfying the following constraints for some{x(f)
(i,j)}, {p(f→g,l)

(i,j) }, {r(f→g,l)
(i,j) }, and{v(f→g,l)

(i,j) } [11]:

∑

j:(i,j)∈E

x
(f)
(i,j) −

∑

j:(j,i)∈E

x
(f)
(j,i) =















λ(f) if i = s(f),

−λ(f) if i = d(f),

0 otherwise,

∀ i ∈ N , f ∈ F , (28)

∑

i:(i,j)∈E

(p
(f→g,l)
(i,j) + r

(f→g,l)
(i,j) + v

(f→g,l)
(i,j) )

=
∑

i:(j,i)∈E

(p
(f→g,l)
(j,i) + r

(f→g,l)
(j,i) + v

(f→g,l)
(j,i) ), ∀ j, l ∈ N , f, g ∈ F ,

(29)

∑

i:(i,j)∈E

p
(f→g,l)
(i,j) −

∑

i:(j,i)∈E

p
(f→g,l)
(j,i)

{

≥ 0 if j = l,

≤ 0 otherwise,
∀ j, l ∈ N , f, g ∈ F , (30)

∑

i:(i,j)∈E

v
(f→g,l)
(i,j) −

∑

i:(j,i)∈E

v
(f→g,l)
(j,i)

{

≤ 0 if j = l,

≥ 0 otherwise,
∀ j, l ∈ N , f, g ∈ F , (31)

p
(g→f,m)
(m,n) = p

(f→g,m)
(m,n) , ∀ (m, n) ∈ E , f, g ∈ F , (32)

∑

f∈F







x
(f)
(i,j) +

∑

l∈N

∑

g>f

pmax
(i,j)(f, g, l) +

∑

l∈N

∑

g 6=f

r
(f→g,l)
(i,j)







≤ γ(i,j), ∀ (i, j) ∈ E , (33)

x
(g)
(i,j) +

∑

l∈N

∑

f 6=g

(p
(f→g,l)
(i,j) + v

(g→f,l)
(i,j) ) ≥ 0, ∀ (i, j) ∈ E , g ∈ F , (34)

p ≤ 0, r ≥ 0, v ≤ 0, x ≥ 0,

wherepmax
(i,j)(f, g, l) , max(p

(f→g,l)
(i,j) , p

(g→f,l)
(i,j) ). ⋄

In this definition, the variables{x(f)
(i,j)}(i,j)∈E define flowf , which is a flow of sizeλ(f) going froms(f) to d(f).

For any two flowsf andg, {p(f→g,l)
(i,j) }(i,j)∈E is thepoison flowof f acting ong, which flows from where flowg is

remedied, or decoded, to the coding nodel; {r(f→g,l)
(i,j) }(i,j)∈E is the remedy flowof f acting ong, which flows from

where remedy packets are provided to where flowg is remedied; and{v(f→g,l)
(i,j) }(i,j)∈E is the remedy request flowof

f acting ong, which flows from the coding nodel to where remedy packets are provided. In Figure 13, we show
these flows for the butterfly network of Figure 1.

Equations (28)–(29) ensure thatx, p, r, v, indeed define these flows. Equations (30)–(31) ensure thatp andv flow
in and out, respectively, of the appropriate coding nodes. Equation (32) ensures that, at the point of coding, two flows
being coded together introduce the same amount of poison to each other. When performing inter-session coding, the
poison flow has the effect of removing flow fromg from the network, while the remedy flow adds additional flow
to the network. Equation (33) ensures that there is sufficient capacity in the network given the effect of poision and
remedy flows. Lastly, equation (34) ensures that poison and request flows follow the appropriate uncoded flows from
which traffic is removed and remedy packets are provided. Readers interested in more detail are referred to [11].

APPENDIX II
ACHIEVABLE RATE REGION FORGENERAL WIRELESSNETWORKS

Using the insights developed in [45], it is not difficult to see thatΛ extends to the wireless case as follows. The
principal differences between the wireless and wireline cases are, first, that the broadcast capability of links is captured
using hyperarcs, and second, that possible interference among links is captured by assuming a more complicated set
of feasible link capacitiesγ. The interpretation of the variables defining the achievable rate region is the same as in
Appendix I.
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Fig. 13. Flow formulation of Traskov et al. [11] for the butterfly topology in Figure 1.

Definition 6 (Λ for wireless networks):Λ for a wireless networkH = (N , E) is the set of flow rates{λ(f)}

satisfying the following constraints for some{x(f)
(m,N,n)}, {p(f→g,l)

(m,N,n)}, {r(f→g,l)
(m,N,n)}, and{s(f→g,l)

(m,N,n)}:

∑

M :(n,M)∈E

∑

m∈M

x
(f)
(n,M,m) −

∑

m:(m,N)∈E

∑

n∈N

x
(f)
(m,N,n) =















λ(f) if n = s(f),

−λ(f) if n = D(f),

0 otherwise,

∀ n ∈ N , f ∈ F ,

∑

m:(m,N)∈E

∑

N∋n

(p
(f→g,l)
(m,N,n) + r

(f→g,l)
(m,N,n) + s

(f→g,l)
(m,N,n))

=
∑

M :(n,M)∈E

∑

m∈M

(p
(f→g,l)
(n,M,m) + r

(f→g,l)
(n,M,m) + s

(f→g,l)
(n,M,m)), ∀ l, n ∈ N , f, g ∈ F ,

∑

m:(m,N)∈E

∑

N∋n

p
(f→g,l)
(m,N,n) −

∑

M :(n,M)∈E

∑

m∈M

p
(f→g,l)
(n,M,m)

{

≥ 0 if n = l,

≤ 0 otherwise,
∀ l, n ∈ N , f, g ∈ F ,

∑

m:(m,N)∈E

∑

N∋n

s
(f→g,l)
(m,N,n) −

∑

M :(n,M)∈E

∑

m∈M

s
(f→g,l)
(n,M,m)

{

≤ 0 if n = l,

≥ 0 otherwise,
∀ l, n ∈ N , f, g ∈ F ,

p
(g→f,m)
(m,N,n) = p

(f→g,m)
(m,N,n) , ∀ (m, N) ∈ E , n ∈ N , f, g ∈ F ,

∑

f∈F







∑

n∈N

x
(f)
(m,N,n) +

∑

l

∑

g>f

pmax
(m,N)(f, g, l) +

∑

l

∑

f 6=g

∑

n∈N

r
(f→g,l)
(m,N,n)







≤ γ(m,N), ∀ (m, N) ∈ E , (35)

x
(g)
(m,N,n) +

∑

l

∑

f

(p
(f→g,l)
(m,N,n) + s

(g→f,l)
(m,N,n)) ≥ 0, ∀ (m, N) ∈ E , n ∈ N , g ∈ F , (36)

p ≤ 0, r ≥ 0, s ≤ 0, x ≥ 0, γ ∈ Convex Hull(Θ), (37)

wherepmax
(m,N)(f, g, l) , max

(

∑

n∈N

p
(f→g,l)
(m,N,n),

∑

n∈N

p
(g→f,l)
(m,N,n)

)

. ⋄
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APPENDIX III
PROOF OFTHEOREM 1

Proof: Our proof is based on stochastic stability methods that are commonly utilized in dynamic algorithm
analysis (e.g. [43], [18], [19], [34]), whereby the mean drift of an appropriate Lyapunov function is studied and is
shown to be negative except for a bounded state space.

To that end, we recall the evolutions of the queue-lengths given by (16) - (18) and note that the queue-lengths can
be upper-bounded in terms of offered servicesM (.)

. [t] as follows:

Q
(f)
j [t + 1] ≤

(

Q
(f)
j [t] − M

(f)
out(j)[t]

)+

+ A
(f)
in(j)[t] + Y

(f)
in(j)[t] + M

(f)
in(j)[t], ∀j ∈ Nf\d(f) (38)

Q
rem(c)
j [t + 1] ≤

(

Q
rem(c)
j [t] − M

rem(c)
out(j) [t]

)+

+ X
rem(c)
in(j) [t] + M

rem(c)
in(j) [t], ∀j 6= c (39)

Q
(c,(f,g),(c,c′))
j [t + 1] ≤

(

Q
(c,(f,g),(c,c′))
j [t] − M

(c,(f,g),(c,c′))
out(j) [t]

)+

+ M
(c,(f,g),(c,c′))
in(j) [t], ∀f, g ∈ F , (40)

∀c ∈ Ng, c
′ ∈ Nf .

Similarly, Y
(f)
in(j)[t] andX

rem(c)
in(j) [t] can be upper bounded in terms of offered services vectorM[t]. The definitions of

the termsM (f)
in(j)[t], M

rem(c)
in(j) [t], M

(c,(f,g),(c,c′))
in(j) [t], M

(f)
out(j)[t], M

rem(c)
out(j) [t], andM

(c,(f,g),(c,c′))
out(j) [t] is similar to that of

their actual services counterparts in Section V-A.
We consider the quadratic Lyapunov function:

V (Q) =
1

2

(

∑

f∈F

∑

j∈Nf

(Q
(f)
j )2 +

∑

f∈F

∑

c∈Nf

∑

j∈Nf

(Q
(rem(c))
j )2 +

∑

f∈F

∑

g∈F

∑

c∈Nf

∑

c′∈Ng

∑

j∈Nf∩Ng

(Q
(c,(f,g),(c,c′))
j )2

)

We let ∆V (Q) , E[V (Q[t + 1])−V (Q[t])|Q[t] = Q] to denote its conditional mean drift when the queue-length
levels areQ. Before we study the mean drift of the queue lengths for this Lyapunov function, we provide a bound
that will be used in the analysis:

Lemma 1:Consider the queue-length evolution given byQ[t + 1] = (Q[t] − M [t])
+

+ A[t] + Y [t] whereA[t] is a
non-negative random variable with finite mean and finite second moment for every time-slott. Also, M [t] andY [t]

are bounded non-negative random variables. Assume that, for everyt, M [t], A[t], andY [t] are independent givenQ[t]

andA[t] is independent ofQ[t]. Then the Lyapunov drift is bounded above as follows:

∆V (Q) ≤ B1 + Q (E[A[t] + Y [t] − M [t]]|Q[t] = Q]) (41)

for some constantB1.
Proof:

(Q[t + 1])2 − (Q[t])2 ≤
(

(Q[t] − M [t])+ + A[t] + Y [t]
)2

− (Q[t])2

≤ (Q[t] − M [t] + U [t] + A[t] + Y [t])2 − (Q[t])2

whereU [t] = M [t]−Q[t] if M [t] > Q[t] or U [t] = 0 otherwise. Note that,U [t] is non-negative and can be bounded
above by some constantη̂. Therefore,

∆V (Q) ≤ (1/2)E
[

(Q[t] − M [t] + A[t] + Y [t])
2 − (Q[t])2|Q[t] = Q

]

+ η̂E [A[t] + Y [t]|Q[t] = Q]

≤ η̂E [A[t] + Y [t]|Q[t] = Q] + (1/2)E
[

(A[t] + Y [t] − M [t])2|Q[t] = Q
]

+ QE [A[t] + Y [t] − M [t]|Q[t] = Q]

≤ η̂E [A[t]] + η̂E [Y [t]|Q[t] = Q] + (1/2)E
[

(A[t])2
]

+ (1/2)E
[

(Y [t] − M [t])2|Q[t] = Q
]

+E [A[t]] E [(Y [t] − M [t])|Q[t] = Q] + Q[t]E [A[t] + Y [t] − M [t]|Q[t] = Q]

≤ B1 + QE [A[t] + Y [t] − M [t]|Q[t] = Q]

whereB1 is a constant. The last inequality follows from the assumptions in the Lemma.
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Note that the terms in queue-length evolutions given in (38)- (40) satisfy the conditions of the above lemma and
hence the drift can be bounded as in the lemma. For notationalconvenience, we drop the term[t] in our derivations.
Defineµ

(.)
(m,n) = E[M

(.)
(m,n)|Q]. Then using the above lemma, the Lyapunov drift can be bounded above as follows:

∆V (Q) ≤ B +
∑

f∈F

λ(f)Q
(f)
s(f) −

∑

(m,n)∈E

[

∑

f

µ
(f)
(m,n)

(

Q(f)
m − Q(f)

n

)

+
∑

c

µ
rem(c)
(m,n)

(

Qrem(c)
m − Qrem(c)

n

)

+
∑

(f,g),(c,c′)

µ
((f,g),(c,c′))
(m,n)

(

(

Q(c,(f,g),(c,c′))
m − (Q(c,(f,g),(c,c′))

n + Q(g)
c )
)

+
(

Q(c′,(f,g),(c,c′))
m − (Q(c′,(f,g),(c,c′))

n + Q
(f)
c′ )
)

)

+
∑

(f,g),(b,b′),(c,c′)

µ
((f,g),(b,b′),(c,c′))
(m,n)

(

Q(f)
m − (Q(c′,(f,g),(c,c′))

n + Q
rem(c′)
b′ )

+Q(g)
m − (Q(c,(f,g),(c,c′))

n + Q
rem(c)
b )

)]

whereB is a constant. The last equation follows from a substitutionof the terms of the queue-length evolution as
provided above, and the Lemma 1.

Notice that for any(m, n) ∈ E , the instantaneous link capacity constraints ( Equation 15)force us to select the
different service rates
(

M
(f)
(m,n), M

rem(c)
(m,n) , M

((f,g),(c,c′))
(m,n) , M

((f,g),(b,b′),(c,c′))
(m,n)

)

such that
∑

f

µ
(f)
(m,n) +

∑

c

µ
rem(c)
(m,n) +

∑

(f,g),(c,c′)

µ
((f,g),(c,c′))
(m,n) +

∑

(f,g),(b,b′),(c,c′)

µ
((f,g),(b,b′),(c,c′))
(m,n) ≤ γ(m,n). (42)

It is not difficult to see that ourRSC algorithm is designed to pick feasibleM dynamically and distributively such
that ∆V (Q) is minimized for eachQ.

Since{λ(f) + ε} lies in Λ, we have{x(f)
(m,n)}, {p(f→g,l)

(m,n) }, {r(f→g,l)
(m,n) }, {s(f→g,l)

(m,n) }, and{γ(m,n)}, which, together

with {λ(f) + ε}, satisfy the constraints provided in Definition 5 given in the section I. In general,p(f→g,l), r(f→g,l),
ands(f→g,l) form a flow that starts withs at nodel, changes tor, and ends withp at nodel [11]. Using the conformal
realization theorem (see, for example, [46, Proposition 1.1]), such a flow can be decomposed into the sum of a finite
number of simple cycle flows. We assume, without loss of generality, that the flow formed byp(f→g,l), r(f→g,l), and
s(f→g,l) is a simple cycle flow; more general flows result from superpositions of this case. Specifically, we assume
that s(f→g,l) is a simple path flow froml to b(f→g,l), that r(f→g,l) is a simple path flow fromb(f→g,l) to D(f→g,l),
and thatp(f→g,l) is a simple path flow fromD(f→g,l) to l. We denote the magnitude of these flows byλ(f→g,l)

and the node immediately precedingl on simple path flowp(f→g,l) by k(f→g,l). For a pictorial demonstration, see
Figure 13 in the section I, where we haveb(f→g,l) = b, D(f→g,l) = c, D(g→f,l) = c′, andk(g→f,l) = k(f→g,l) = n

and l = m.
Let

W(m,n) , max

(

max
f

(

Q(f)
m − Q(f)

n

)

, max
c

(

Qrem(c)
m − Qrem(c)

n

)

,

max
(f,g),(c,c′)

(

Q(c,(f,g),(c,c′))
m − (Q(c,(f,g),(c,c′))

n + Q(g)
n In=c)

)

+
(

Q(c′,(f,g),(c,c′))
m − (Q(c′,(f,g),(c,c′))

n + Q(f)
n In=c′)

)

,

max
(f,g),(b,b′),(c,c′)

(

Q(f)
m − (Q(c′,(f,g),(c,c′))

n + Q
rem(c′)
b′ ) + Q(g)

m − (Q(c,(f,g),(c,c′))
n + Q

rem(c)
b )

)

)

be the weight associated with link(m, n). Then, under theRSC algorithm, we have

∆V (Q) ≤ B +
∑

f∈F

λ(f)Q
(f)
s(f) −

∑

(m,n)∈E

γ(m,n)W(m,n), (43)
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which follows from the link rate constraint (42).
Next, we consider the term

∑

(m,n)∈E

γ(m,n)W(m,n): using equation (33), we obtain

∑

(m,n)∈E

γ(m,n)W(m,n) ≥
∑

(m,n)∈E

∑

f







x
(f)
(m,n) +

∑

l

∑

g>f

pmax
(m,n)(f, g, l) +

∑

l

∑

g 6=f

r
(f→g,l)
(m,n)







W(m,n),

which then yields
∑

(m,n)∈E

γ(m,n)W(m,n) ≥
∑

(m,n)∈E

∑

f

x
(f)
(m,n)W(m,n) (44)

+
∑

(m,n)∈E

∑

f

∑

l

∑

g 6=f

p
(f→g,l)
(m,n) W(m,n) (45)

−
∑

(m,n)∈E

∑

f

∑

l

∑

g>f

pmin
(m,n)(f, g, l)W(m,n) (46)

+
∑

(m,n)∈E

∑

f

∑

l

∑

g 6=f

r
(f→g,l)
(m,n) W(m,n), (47)

where pmin
(m,n)(f, g, l) , min(p

(f→g,l)
(m,n) , p

(g→f,l)
(m,n) ). In the last expansion, (45) and (46) follows from the fact that

pmax
(m,n)(f, g, l) = p

(f→g,l)
(m,n) + p

(g→f,l)
(m,n) − pmin

(m,n)(f, g, l).

Next, we study the terms (44)-(47): First, we consider(44) + (45):

(44) + (45) =
∑

(m,n)∈E

∑

f



x
(f)
(m,n) +

∑

l

∑

g 6=f

p
(f→g,l)
(m,n)



W(m,n)

(a)

≥
∑

(m,n)∈E

∑

f



x
(f)
(m,n) +

∑

l

∑

g 6=f

p
(f→g,l)
(m,n)





(

max
f

(

Q(f)
m − Q(f)

n

)

)

=
∑

(m,n)∈E

∑

f

x
(f)
(m,n)

(

Q(f)
m − Q(f)

n

)

(48)

+
∑

(m,n)∈E

∑

f

∑

l

∑

g 6=f

p
(f→g,l)
(m,n)

(

Q(f)
m − Q(f)

n

)

, (49)

where the inequality(a) follows from the definition ofW(m,n) and the fact thatx(f)
(m,n) +

∑

l

∑

g 6=f p
(f→g,l)
(m,n) ≥ 0 for

all (m, n) ∈ E andf ∈ F since (34) holds ands ≤ 0.

Next, let us lower-bound the terms in (48) and (49). By equation (28) and the fact thatQ(f)
d(f) = 0 for all f ∈ F ,

we have
∑

(m,n)∈E

x
(f)
(m,n)

(

Q(f)
m − Q(f)

n

)

= (λ(f) + ε)Q
(f)
s(f). (50)

Also, by the assumption thatp(f→g,l) is a simple path flow froml to D(f→g,l) of rate−λ(f→g,l), we have
∑

(m,n)∈E

p
(f→g,l)
(m,n)

(

Q(f)
m − Q(f)

n

)

= −λ(f→g,l)
(

Q
(f)
l − Q

(f)

D(f→g,l)

)

= λ(f→g,l)
(

Q
(f)

D(f→g,l) − Q
(f)
l

)

. (51)

Thus, by using the lower bounds in (50) and (51) in (48) and (49), respectively, we obtain

(44) + (45) ≥
∑

f

(λ(f) + ε)Q
(f)
s(f) +

∑

f

∑

l

∑

g 6=f

λ(f→g,l)
(

Q
(f)

D(f→g,l) − Q
(f)
l

)

. (52)
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We now move to the third summation (46). We have, using equation (32),

−
∑

(m,n)∈E

pmin
(m,n)(f, g, l)W(m,n) = λ(f→g,l)W(l,k(f→g,l)) −

∑

(m,n)∈E,m 6=l

pmin
(m,n)(f, g, l)W(m,n). (53)

Now, using the definition ofW(m,n) we can write
λ(f→g,l)W(l,k(f→g,l))

≥ λ(f→g,l) max
(f,g),(b,b′),(c,c′)

{

Q
(f)
l + Q

(g)
l − Q

rem(c)
b − Q

rem(c′)
b′ − Q

(c,(f,g),(c,c′))

k(f→g,l) − Q
(c′,(f,g),(c,c′))

k(g→f,l)

}

(a)

≥ λ(f→g,l)
(

Q
(f)
l + Q

(g)
l − Q

rem(D(f→g,l))

b(f→g,l) − Q
rem(D(g→f,l))

b(g→f,l)

−Q
(D(f→g,l),(f,g),(D(f→g,l),D(g→f,l)))

k(f→g,l) − Q
(D(g→f,l),(f,g),(D(f→g,l),D(g→f,l)))

k(g→f,l)

)

,

(54)

where the inequality(a) is obtained by setting(c, c′) in the previous maximization to(D(f→g,l), D(g→f,l)).

Similarly, noting thatp ≤ 0 and using the definition ofW(m,n), we can write
−pmin

(m,n)(f, g, l)W(m,n)

≥ −pmin
(m,n)(f, g, l) max

(f,g),(c,c′)

(

Q(c,(f,g),(c,c′))
m − (Q(c,(f,g),(c,c′))

n + Q(g)
n In=c)

+Q(c′,(f,g),(c,c′))
m − (Q(c′,(f,g),(c,c′))

n + Q(f)
n In=c′)

)

≥ −pmin
(m,n)(f, g, l)

(

Q(D(f→g,l),(f,g),(D(f→g,l),D(g→f,l)))
m − Q(D(f→g,l),(f,g),(D(f→g,l),D(g→f,l)))

n − Q(f)
n I{n=D(f→g,l)}

+Q(D(g→f,l),(f,g),D(f→g,l),D(g→f,l)))
m − Q(D(g→f,l),(f,g),(D(f→g,l),D(g→f,l)))

n − Q(g)
n I{n=D(g→f,l)}

)

,

(55)

where the last inequality is obtained by setting(c, c′) = (D(f→g,l), D(g→f,l)) in the previous maximization. Now,
pmin
(m,n)(f, g, l)W(m,n) is a flow of rate−λ(f→g,l) from l on to the pathP = {path fromk(f→g,l) to D(f→g,l)} ∪

{path fromk(g→f,l) to D(g→f,l)}.Therefore, we can write from (55)
−
∑

(m,n)∈E,m 6=l p
min
(m,n)(f, g, l)W(m,n)

≥
∑

(m,n)∈P

λ(f→g,l)W(m,n)

≥ λ(f→g,l)
(

Q
(D(f→g,l),(f,g),(D(f→g,l),D(g→f,l)))

k(f→g,l) − Q
(f)

D(f→g,l) + Q
(D(g→f,l),(f,g),(D(f→g,l),D(g→f,l)))

k(g→f,l) − Q
(g)

D(g→f,l)

)

,

(56)

Hence, by combining (53), (54), and (56), we obtain

−
∑

(m,n)∈E

∑

f

∑

l

∑

g>f

pmin
(m,n)(f, g, l)W(m,n)

≥
∑

f

∑

l

∑

g>f

λ(f→g,l)
(

Q
(f)
l − Q

(f)

D(f→g,l)

+Q
(g)
l − Q

(g)

D(g→f,l) − Q
rem(D(f→g,l))

b(f→g,l) − Q
rem(D(g→f,l))

b(g→f,l)

)

=
∑

f

∑

l

∑

g 6=f

λ(f→g,l)
(

Q
(f)
l − Q

(f)

D(f→g,l) − Q
rem(D(f→g,l))

b(f→g,l)

)

.

(57)

Finally, we move to the fourth summation term (47). We have
∑

(m,n)∈E

r
(f→g,l)
(m,n) W(m,n) ≥

∑

(m,n)∈E

r
(f→g,l)
(m,n)

(

Qrem(D(f→g,l))
m − Qrem(D(f→g,l))

n

)

= λ(f→g,l)Q
rem(D(f→g,l))

b(f→g,l) ,
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where we have used the assumption thatr(f→g,l) is a simple path flow fromb(f→g,l) to D(f→g,l) of magnitude
λ(f→g,l). Thus,

∑

(m,n)∈E

∑

f

∑

l

∑

g 6=f

r
(f→g,l)
(m,n) W(m,n) ≥

∑

f

∑

l

∑

g 6=f

λ(f→g,l)Q
rem(D(f→g,l))

b(f→g,l) . (58)

Bounding the summations (44)-(47), by (52), (57), and (58),and then canceling common terms yields
∑

(m,n)∈E

γ(m,n)W(m,n) ≥
∑

f∈F

(λ(f) + ε)Q
(f)
s(f),

which, when substituted into equation (43), proves that∆V (Q[t]) ≤ B − ε
∑

f∈F

Q
(f)
s(f)[t].

We take the expectation of both sides with respect to distribution of Q[t] for all t between0 to T − 1. Then, add
both sides of the resultingT inequalities and cancel common terms to get

E[V (Q[T − 1]) − V (Q[0])] ≤ BT − ǫ

T−1
∑

t=0

∑

f∈F

E[Q
(f)
s(f)[t]].

After re-arranging terms, noting the non-negativity ofV (Q) for any feasible queue-length vector, dividing both sides
by T , and lettingT go to infinity, we obtain

lim sup
T→∞

1

T

T−1
∑

t=0

∑

f∈F

E[Q
(f)
s(f)[t]] ≤

B

ǫ
< ∞,

which establishes the strong stability of all entry-level queues. Then, we can recursively argue that each downstream
queue must also be stable since, under our proposedRSC policy, packets are forwarded in the direction of smaller
queue-lengths. Thus, the entry-level queues are statistically largest, and their stability implies the stability of the
remaining queues.
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