
1

Distributed Cross-Layer Algorithms for the Optimal
Control of Multi-hop Wireless Networks

Atilla Eryilmaz, Asuman Ozdaglar, Devavrat Shah, and Eytan Modiano

Abstract— In this paper, we provide and study a general frame-
work that allows the development of distributed mechanisms to
achieve full utilization of multi-hop wireless networks. In partic-
ular, we describe a generic randomized routing, scheduling and
flow control scheme that allows for a set of imperfections in the
operation of the randomized scheduler to account for potential
errors in its operation. These imperfections enable the design of
a large class of low-complexity and distributed implementations
for different interference models. We study the effect of such
imperfections on the stability and fairness characteristics of the
system, and explicitly characterize the degree of fairness achieved
as a function of the level of imperfections. Our results also
reveal the relative importance of different types of errors on
the performance of the system, and provide valuable insight
to the design of distributed controllers with favorable fairness
characteristics.

In the second part of the paper, we focus on a specific
interference model, namely the secondary interference model,
and develop distributed algorithms with polynomial communi-
cation and computation complexity in the network size. This
is an important result given that earlier throughput-optimal
algorithms developed for such a model relies on the solution to an
NP-hard problem. This results in a polynomial complexity cross-
layer algorithm that achieves throughput optimality and fair
allocation of network resources amongst the users. We further
show that our algorithmic approach enables us to efficiently
approximate the capacity region of a multi-hop wireless network.

I. INTRODUCTION

There has been considerable recent interest in develop-
ing network protocols to achieve the multiple objectives
of throughput maximization and fair allocation of resources
among competing users. Much of the work in wireless commu-
nication networks has focused on centralized control and has
developed throughput-optimal policies (e.g. [41], [30], [14]).
However, these policies do not directly lend themselves to dis-
tributed implementation, which is essential in practice. In this
paper, we provide a class of randomized routing, scheduling
and flow control algorithms that achieve throughput-optimal
and fair resource allocations that is amenable to distributed
implementation with polynomial communication and compu-
tation complexity.

In their seminal work, Tassiulas and Ephremides developed
a joint routing-scheduling algorithm that stabilizes the network
whenever the arrival rate of the exogenous flows are within
the stability (capacity) region. In [40], Tassiulas showed that
randomized algorithms can be used to achieve maximum

Atilla Eryilmaz is with the Ohio State University {eryilmaz@ece.osu.edu}.
Asuman Ozdaglar, Devavrat Shah, and Eytan Modiano are with the Mas-
sachusetts Institute of Technology {{asuman, devavrat, modiano}@mit.edu}.

throughput in input queued switches with linear computa-
tional complexity. To improve the exponentially high delay
performance of [40], [17] introduced randomized algorithms
for switches. Other research, for example, [1], [22], [34], [37],
[30], [2], [14], [35], [36], have contributed to the analysis of
centralized throughput optimal policies in wireless networks.

This paper contributes to the study of resource allocation in
multi-hop wireless networks in several fundamental ways.

First, we propose a generic cross-layer mechanism with
three components: a randomized scheduling component and a
routing component (implemented by the network nodes) aimed
at allocating resources to the flows efficiently; and a dual
congestion control component (implemented at the sources)
aimed at regulating the flow rates to achieve fairness. The
scheduling component extends the idea introduced in [40],
which is proposed as a low-complexity implementation of the
centralized scheduler of [41]. However, in its original form
the algorithm is not suitable for distributed implementation
since it requires global operations. To facilitate distributed
implementation, several types of imperfections are added to
the scheduler in [27]. In this work, we further add a routing
component to the framework to optimally steer multi-hop
traffic, and a congestion control component that regulates the
flow rates to achieve fair division of the resources among
flows, where fairness is defined using the utility-maximization
framework of Kelly et al. [20], [21] and further improved in
subsequent works [25], [44], [38].

Second, under our proposed generic cross-layer scheme, we
study the proximity of the achieved rate allocation to the fair
allocation, and explicitly characterize the degree of perfor-
mance loss as a function of the imperfections of the underlying
scheduler. Moreover, by revealing the relative importance of
different types of errors on the performance, our analysis also
yields principles for efficient design of distributed network
controllers.

Third, for the secondary interference model1, we show
that our cross-layer mechanism can be implemented via a
distributed algorithmic approach. This approach involves the
operation of two sequential algorithms. A novel feature of
these algorithms is their operation on an appropriately con-
structed conflict graph. The use of the conflict graph leads to a
partitioning of the network, whereby the decisions can be made
independently in different partitions. Moreover, the operations
on the conflict graph can be mapped into network level

1In the secondary interference model, two links interfere if they share a
node or if there is a link that connects any of the end nodes of the two links.
This interference model prevents real world issues such as the hidden terminal
problem (see [31]).

2

operations using the special structure of the problem. These
distributed algorithms not only achieve throughput-optimal
and fair allocations, but also have polynomial communication
and computation complexity.

Finally, our policy suggests an algorithmic method of es-
timating the stability region of multi-hop wireless networks,
which is otherwise a very difficult task to characterize.

Our paper is related to recent work combining flow control
with routing and scheduling, including [23], [39], [13], [29],
[14]. While these papers also propose algorithms achieving
fair and throughput-optimal allocations, the routing-scheduling
component of these algorithms are based on the centralized
control approach of [41], and cannot be implemented in a
distributed manner in wireless networks. Moreover, for the
secondary interference model, the centralized optimization
involved in the operation of these algorithms is NP-hard, which
further limits their practical implementation.

Other related works include [11], [26], [24], [42], which
develop distributed algorithms that guarantee 50% utilization
of the stability region for a primary interference model2. While
distributed implementation of these algorithms is possible, this
comes at the cost of sacrificing a significant portion of the
capacity of the network (see, for example, [7], [6]). As more
general interference models are considered, even more of the
capacity of the network needs to be sacrificed for distributed
implementation (e.g., [43], [8]). For example, in the case
of a secondary interference model with the grid topology,
distributed implementation can only guarantee 12.5% of the
capacity of the network. [27] also used [40] to develop
distributed schedulers by utilizing Gossip mechanisms.

More recently, the throughput performance of greedy max-
imal matching schedulers are investigated for general interfer-
ence models and geometric graphs ([18]), which proves that
1/6 of the stability region is guaranteed to be achievable by
such schedulers. In other recent works ([19], [5]), distributed
schedulers are proposed with attractive low delay characteris-
tics.

In this work, we provide a scheduling-routing algorithm
combined with a congestion controller for a general system
model whereby multi-hop flows are considered. Following the
approach of [27], we allow various types of errors to occur
during the scheduling operation, which facilitates the design
of distributed implementations. We analyze the impact of such
imperfections on the fairness characteristics of the overall joint
mechanism, and explicitly characterize effect of different types
of errors on the performance.

The rest of the paper is organized as follows. In Section II,
we describe the system model and our goal. In Section III, we
describe a generic randomized scheme for scheduling-routing-
congestion control, and prove its throughput-optimality and
fairness properties. In Section V, we use the randomized
scheme to design and analyze distributed algorithms for the
secondary interference model. Finally, in Section VI we pro-
vide simulation results.

Throughout the paper, we denote the dot product of two

2In the primary interference model, each feasible allocation consists of links
that do not share a node, i.e. each feasible allocation is a matching.

vectors, say X and Y, as 〈X,Y〉.

II. SYSTEM MODEL AND GOAL

Consider a wireless network that is represented by an
undirected graph, G = (N ,L), which has a node set N (with
cardinality N), a link set L (with cardinality L). We assume a
time slotted system with synchronized nodes, where each slot
is long enough to accommodate a single packet transmission
over each link in L unless there is interference. We refer to the
flow that enters the network at node n and leaves it at node d as
Flow-(n, d). We let X[t] =

(
X

(d)
n [t]

)d∈N

n∈N
denote the vector

of arrivals to the network in slot t with X
(d)
n [t] corresponding

to the arrivals for Flow-(n, d). We use the notation x
(d)
n [t]

to denote the mean flow rate of Flow-(n, d) in slot t, i.e.,
x

(d)
n [t] = E[X(d)

n [t]]. Then, the mean flow rate of Flow-(n, d)
is defined as x̄

(d)
n = limT→∞ 1

T

∑T−1
t=0 x

(d)
n [t] whenever it

exists.
We consider a general interference model specified by a

set of pairs of links that interfere with each other, i.e., we
say that two links interfere if their concurrent transmissions
collide. We assume that if two interfering links are activated in
a slot, both transmissions fail. Note that this includes a large
class of graph-theoretic interference models considered in the
scheduling literature (e.g. the primary interference model [33],
[24], [42], [7], or the secondary interference model [3], [43],
[8]).

We use S[t] =
(
S(n,m)[t]

)
(n,m)∈L to denote a link alloca-

tion vector (or schedule) at time t, and S to denote the set of
feasible allocations where a feasible allocation is a set of links
in which no two links interfere with each other. We introduce
the notation S

(d)
(n,m) to distinguish packets destined for different

nodes: at any given slot t, S
(d)
(n,m)[t] ∈ {0, 1} is 1 if link

(n,m) serves a packet destined for node d in that slot, and 0
otherwise. This implies that

∑
d∈N S

(d)
(n,m)[t] = S(n,m)[t], for

all (n,m) ∈ N .
At each node, a buffer (queue) is maintained for each

destination. We let Q
(d)
n [t] denote the length of the queue at

node n destined for node d at the beginning of slot t. Evolution
of Q

(d)
n [t] when n 6= d satisfies

Q(d)
n [t + 1] ≤

(
Q(d)

n [t]− S
(d)
out(n)[t]

)+

+ X(d)
n [t] + S

(d)
into(n)[t],

(1)

where (y)+ = max(0, y). Also,

S
(d)
into(n)[t] ,

∑

{k:(k,n)∈L}
S

(d)
(k,n)[t]

is a shorthand for the maximum number of packets that can
be internally routed to node n that are destined for node
d. Similarly, S

(d)
out(n)[t] ,

∑
{m:(n,m)∈L} S

(d)
(n,m)[t] are the

maximum number of packets that can leave node n and are
destined for node d. When, n = d, we set Q

(d)
d [t] = 0, for all

t, because in that case the packets have already reached their
destination.

Next, we introduce the concepts of network stability and
capacity region.

3

Definition 1 (Stability): A given queue, say Q
(d)
n , is stable

if lim sup
T→∞

1
T

T−1∑
t=0

E[Q(d)
n [t]] < ∞. The network is stable if all

queues are stable; and unstable otherwise.
Definition 2 (Capacity [Stability] Region C): The capac-

ity (stability) region C is the set of (x̄(d)
n)n,d∈N ≥ 0 for which

there exists an algorithm that can stabilize the network3.
Given the general model described above, our goal is to de-

sign distributed algorithms that achieve throughput-optimality
and fair allocation of the network resources amongst the flows.
Following the extensive literature on the topic (e.g. [41], [37],
[30], [13]) we call a policy throughput-optimal if it can support
any mean flow rate in the capacity region without violating the
network stability.

To define fairness we use the “utility maximization” frame-
work of economics: with each flow, say Flow-(n, d), we
associate a utility function Un,d(·), of the mean flow rates
whereby Un,d(x̄

(d)
n) is a measure of the utility gained by Flow-

(n, d) for the mean flow rate x̄
(d)
n . We assume, based on the

law of diminishing returns, that the function Un,d(·) is concave
and non-decreasing for all flows. Then, a mean flow rate vector
?
x is referred to as a fair allocation if it is an optimal solution
of the convex optimization problem:

?
x ∈ arg max

x∈C

∑

n,d∈N
Un,d(x̄(d)

n). (2)

Hence, a fair allocation is a mean flow rate vector that
maximizes the aggregate utility over all flows in the network.
It is known that by defining Un,d(·) appropriately, different
types od fairness, such as proportional or max-min fairness,
can be achieved ([20], [21], [25], [38], [13], [29], [23]).

III. GENERIC CROSS-LAYER SCHEME

In this section, we provide the description of a generic
congestion control-routing-scheduling scheme that achieves
the throughput-optimality and fairness goals of Section II. The
scheme combines ideas from recently studied congestion con-
trollers designed for wireless networks (e.g. [13], [29], [24],
[39], [9]), and the randomized scheduling strategy introduced
by Tassiulas in his seminal work [40]. Our algorithm not only
extends the use of randomized scheme of [40] to multi-hop
networks with general interference models, but also utilizes the
parallel use of a dual congestion controller to achieve fairness.

The generic scheme is composed of three components: the
scheduling and routing components that are implemented by
the network, and the congestion control component that is
implemented by the users (or the sources of the flows). The
scheduling component builds on two algorithms: one, called
PICK, which randomly picks a feasible allocation satisfying a
specific condition [see Eq. (6) below]; and the other, called
UPDATE, which contains a network-wide comparison opera-
tion [see Eq. (7) below]. In the operation of PICK and UPDATE
algorithms, we allow for various types of imperfections and
relaxations to accommodate errors and to facilitate distributed

3Note that, under this definition, the capacity region is monotone, i.e., if
x ∈ C, then y ≤ x (component-wise) must also be in C.

implementations. We will comment on the nature of these
imperfections and relaxations after the description of the
cross-layer scheme. The routing component determines which
packets to be served over which links so as to optimize their
routes. Finally, the congestion controller component adjusts
the rate of injected traffic into the network to full utilize the
resources. In particular, the goal of the congestion controller
is to solve (2).

The scheme operates in stages, each stage containing a
finite number of time slots where the number of slots is a
design choice. The scheduling-routing and congestion control
decision is updated at the beginning of each stage, and is kept
unmodified throughout the stage.

Definition 3 (Generic Cross-layer Scheme): The cross-
layer algorithm is composed of three components: a
randomized scheduler with imperfections characterized
by the parameters (δ, γ, ψ); a routing component that
steers packets towards optimal paths; and a congestion
controller component that regulates the amount of
injected traffic into the network to maximize the network
utilization. Next, we describe each of these components.
SCHEDULING(δ, γ, ψ) COMPONENT: The scheduling compo-
nent determines the service rates of all the links in the network,
namely S[t], by performing the following operations
• At stage t, for each link (n,m) ∈ L, we define its weight
as

W(n,m)[t] = W(m,n)[t] , max
d

∣∣∣Q(d)
n [t]−Q(d)

m [t]
∣∣∣ , (3)

which is also referred to as the maximum differential backlog
([30], [14]) of link (n,m).
• We define the optimum feasible allocation

?

SW [t] for W as
?

SW [t] ∈ arg max
S∈S

∑

l∈L
wl[t]Sl ≡ arg max

S∈S
〈W[t],S〉(4)

= arg max
S∈S

〈Q[t],Sout − Sin〉. (5)

• PICK: Scheduler randomly picks any feasible allocation
R[t] ∈ S, that satisfies

P(R[t] =
?

SW [t]) ≥ δ, for all W[t] and t, (6)

for some δ > 0.
• UPDATE: The schedule for time t, S[t] is updated such that
it satisfies
P (〈Q[t],Sout[t]− Sin[t]〉 ≥

max {〈Q[t],Sout[t− 1]− Sin[t]〉,
(1− γ)〈Q[t],Rout[t]−Rin[t]〉}) ≥ 1− ψ,

(7)

for some γ, ψ ∈ [0, 1).

The parameters (δ, γ, ψ) in the above scheduler capture
different type of imperfections and relaxations: δ relaxes the
constraint of picking the optimum feasible allocation in each
iteration, hence significantly reduces the complexity of this
operation; γ captures the potential errors in the computation
of the total weight of the randomly selected schedule; and ψ
captures the potential errors in the comparison of the weights
of the previous and the random scheduler.

4

ROUTING COMPONENT: Once the link rate vector S[t] is
determined by the scheduler, the router determines which
packets to transmit over them.
• Let d?

nm = d?
mn , arg maxd

∣∣∣Q(d)
n [t]−Q

(d)
m [t]

∣∣∣. Then,

– if Q
(d?

nm)
n [t] ≥ Q

(d?
nm)

m [t] : Serve S(n,m)[t] packets from
Q

(d?
nm)

n to Q
(d?

nm)
m , and

– if Q
(d?

nm)
n [t] < Q

(d?
nm)

m [t] : Serve S(n,m)[t] packets from
Q

(d?
nm)

m to Q
(d?

nm)
n .

DUAL CONGESTION CONTROL COMPONENT:
• Let Q denote the queue-length vector at the beginning of
stage t. Then, each node, say n, generates X

(d)
n [t] packets to

be transmitted to node d, for each d, such that

X(d)
n [t] =

{
U ′−1

n,d

(
Q

(d)
n [t]
K

)}M

0

, (8)

where M and K are positive scalars, and {z}b
a :=

min(max(z, a), b).
Notice that (8) is equivalent to solving

X(d)
n [t] = arg max

y∈[0,M]

(
KUn,d(y)− y Q(d)

n [t]
)

, (9)

and also, note that if there exists no flow from n to d, we can
define Un,d(·) ≡ 0 to get X

(d)
n ≡ 0.

The imperfections included in the scheduling component are
likely to occur when randomized or distributed methods are
employed to perform these operations. Our goal in this work is
to understand the effect of these parameters on the optimality
(or fairness) characteristics of the cross-layer mechanism. Our
framework covers various schedulers that are introduced in
the literature (e.g. [40], [27], [32]). In particular, [32] yields a
scheduler for the first-order interference model with γ = 1/m,
and ψ = 0, where m is a design parameter. Also, [27]
contain algorithms with γ = ψ = 0, as well as gossip-
based algorithms with arbitrarily small γ, ψ parameters. None
of these works, however, contain a study of the cross-layer
scheme with congestion control. Hence, our analysis of the
generic cross-layer scheme will be directly applicable to all
these cases. In Section V, we will introduce a new algorithm
that is applicable to higher order interference models, and use
our results to show that it achieves optimality using operations
that grow polynomially with the number of nodes.

IV. ANALYSIS

In this section, we study the throughput-optimality and
fairness properties of the proposed generic cross-layer scheme.
Our analysis relies on the notions of ε-relaxed stability region
and ε-fair allocation, which we define next.

Definition 4 (ε-relaxed stability region, C(ε)):

C(ε) , {x ≥ 0 : (x̄(d)
n + ε)n,d∈N ∈ C}.

Definition 5 (ε-fair allocation,
?
x (ε)):

?
x (ε) = arg max

x∈C(ε)

∑

n,d

Un,d(x̄(d)
n)

Note that as ε ↓ 0, we have
?
x (ε) →?

x . Let us define a new
state, Y := (Q,S), which forms a Markov Chain under our
generic cross-layer scheme.

In the following theorem, we focus on the scheduling-
routing component of the algorithm by assuming that the
mean flow rates lie inside the ε-relaxed stability region. Here,
we assume that the arrivals are inelastic, i.e., their statistics
are not modified throughout the operation of the scheduling-
routing component. Later, we will add the congestion control
component into the framework.

Theorem 1: Assume that X
(d)
n [t] is independent and iden-

tically distributed (i.i.d.) 4 for all t and flows with

E
[(

X
(d)
n

)2

[1]
]
≤ A < ∞. Assume that ε > 0 is chosen

such that ε
dmax

> γ +
√

ψ
δ , where dmax is the maximum

degree of the network, and δ, ψ, and γ are the parameters of
the generic cross-layer scheme.

Let the Lyapunov function V (Y) be defined as V (Y) =∑

n,d

(
Q(d)

n

)2

= ‖Q‖22. Then, for any mean arrival vector λ :=
(
E[X(d)

n [1]]
)

n,d∈N
∈ C(ε), the scheduling-routing (δ, γ, ψ)

policy guarantees, for some finite T,

∆V
(T)
t (Y) , E [V (Y[t + T])− V (Y[t]) |Y[t] = Y]

≤ −cT

(
ε

dmax
− γ −

√
ψ

δ

) ∑

n,d

Q(d)
n + B1,

where B1 is a bounded positive number, and c is a positive
constant.

Proof: The proof is moved to the Appendix.
An immediate consequence of Theorem 1 is provided next.

Corollary 1: The generic cross-layer algorithm stabilizes
any traffic with a mean flow rate vector lying inside
C(dmax(γ +

√
ψ/δ)).

Proof: Pick ε to be larger but arbitrarily close to
dmax(γ +

√
ψ/δ). Then, from Theorem 1, we have

∆V
(T)
t (Y) ≤ −ε′

∑

n,d

Q(d)
n + B1,

for some ε′ > 0. This shows that the Foster-Lyapunov
criterion is satisfied (see e.g. [4]), and therefore we must have
lim supT→∞

1
T

∑T−1
t=0

∑
n,d E[Q(d)

n [t]] < ∞.
The scheduling-routing component of the above algorithm

is based on [40] whereby the existing feasible allocation is
compared to a randomly picked feasible allocation, and the
one with the larger total weight is implemented in the next
stage. The same strategy is also used in a recent work [27]
which develops another deterministic distributed algorithm for
the primary interference model, and randomized algorithms
based on gossiping techniques that are applicable to more
general interference models. In other works (e.g. [24], [8], [7],
[43], [32], [18]), low complexity implementations have been
proposed at the expense of different levels of efficiency loss
for the primary interference model. But, many of these results
are not applicable in the higher interference models scenarios.

4The assumption of i.i.d. arrivals is not critical to the analysis. The same
results continue to hold for processes with mild ergodicity properties ([15]).

5

The dual congestion control component of our generic
algorithm is easy to implement at each source because it only
requires the queue-length of the buffer at the source. This is
in contrast to several earlier mechanisms that require the price
information of all the links on the route of that flow [21],
[25], [38]. Also, since each source only needs to know its
own utility function, the flow control mechanism can operate
in a completely decentralized fashion.

The next theorem studies the impact of the parameters
(δ, γ, ψ) in the proposed cross-layer mechanism on its stability
and fairness characteristics. Earlier works in this context (e.g.
[29], [13], [24], [39]) are applicable only to the case of a
centralized scheduler. Below, we extend these results in the
presence of a randomized scheduling-routing component with
imperfections.

Theorem 2: For any generic cross-layer (δ, γ, ψ) scheme,
there exists finite constants, C1, C2, such that: for any ε > 0
for which ε

dmax
> γ +

√
ψ
δ , we have

∑

(n,d)∈N 2

q̄(d)
n ≤ C1K, (10)

∑

(n,d)∈N 2

Un,d(x̄(d)
n) ≥

∑

(n,d)∈N 2

Un,d

(
?
x

(d)

n (ε)
)
− C2

K
, (11)

where q̄
(d)
n , lim sup

T→∞

1
T

T−1∑
t=0

E[Q(d)
n [t]],

and x̄
(d)
n , lim

T→∞
1
T

T−1∑
t=0

E[X(d)
n [t]].

Proof: Recall that Y = (Q,S), and that the definition of
the Lyapunov function introduced in Theorem 1 is: V (Y) =
∑

n,d

(
Q

(d)
n

)2

. Then, by using the same arguments as in the
derivation of (17) and (18), it can be shown that
∆V

(T)
t (Y)

, E [V (Y[t + T])− V (Y[t]) |Y[t] = Y]

≤
T−1∑
τ=0

E [V (Y[t + τ + 1])− V (Y[t + τ] |Y[t] = Y]

≤ 2
T−1∑
τ=0

E [〈Q[t + τ],Sin[t + τ] + X[t + τ]

−Sout[t + τ]〉 |Y[t] = Y] + T (b1 + b2),

for some finite constants b1, b2 that were introduced
in the proof of Theorem 1. Next, we add and sub-

tract 2K

T−1∑
τ=0

E

 ∑

n,d∈N
Un,d(X(d)

n [t + τ]) |Y[t] = Y

 , and

re-arrange the terms to get

∆V
(T)
t (Y)

≤ 2K

T−1∑
τ=0

E

 ∑

n,d∈N
Un,d(X(d)

n [t + τ]) |Y[t]

+2
T−1∑
τ=0

E[E[K
∑

n,d∈N
Un,d(X(d)

n [t + τ])−

〈Q[t + τ],X[t + τ]〉 |Y[t + τ]] |Y[t]]

−2
T−1∑
τ=0

E [〈Q[t + τ],Sout[t + τ]− Sin[t + τ] |Y[t]]

+T (b1 + b2)

Lemma 1:

E[K
∑

n,d∈N
Un,d(X(d)

n [t + τ])

−〈Q[t + τ],X[t + τ]〉 |Y[t + τ]]

≥ K
∑

n,d∈N
Un,d(

?
x

(d)

n (ε))− 〈Q[t + τ],
?
x (ε)〉,

where
?
x (ε) is defined in Definition 5.

Proof: [Lemma 1] Note that the congestion control mech-

anism picks X
(d)
n [t] to solve (9). Since

?
x

(d)

n ∈ [0, M], we have
that X

(d)
n [t] satisfies

K
∑

n,d∈N
Un,d(X(d)

n [t + τ])− 〈Q[t + τ],X[t + τ]〉

≥ K
∑

n,d∈N
Un,d(

?
x

(d)

n (ε))− 〈Q[t + τ],
?
x (ε)〉,

for all τ.
We use the result of Lemma 1 in the previous expression to
get
∆V

(T)
t (Y)

≤ 2K

T−1∑
τ=0

E

 ∑

n,d∈N
Un,d(X(d)

n [t + τ]) |Y[t]

−2TK
∑

n,d∈N
Un,d(

?
x

(d)

n (ε))

+2
T−1∑
τ=0

E
[
〈Q[t + τ],

?
x (ε)

+Sin[t + τ]− Sout[t + τ] |Y[t]] (12)
+T (b1 + b2)

≤ 2K

T−1∑
τ=0

E

 ∑

n,d∈N
Un,d(X(d)

n [t + τ]) |Y[t]

−2TK
∑

n,d∈N
Un,d(

?
x

(d)

n (ε))

−2cT

(
ε

dmax
− γ −

√
ψ

δ

)∑

n,d

Q(d)
n [t]

+2B1 + T (b1 + b2),

6

where the last inequality follows from the application of
Theorem 1 to (12).

Next, we take the expectation of both sides of the inequality
to eliminate the conditioning, and then take the telescoping
sum of P such T -step drifts to obtain
E [V (Y[PT])− V (Y[0])]

≤ 2K

PT−1∑

k=0

E

 ∑

n,d∈N
Un,d(X(d)

n [k])

 (13)

−2KPT
∑

n,d∈N
Un,d(

?
x

(d)

n (ε)) (14)

−2cTρ

P−1∑
p=0

∑

n,d

E[Q(d)
n [pT]] + 2B1P (15)

+PT (b1 + b2), (16)

where we define ρ :=
(

ε
dmax

− γ −
√

ψ
δ

)
. Noting that

V (Y) ≥ 0 for all feasible Y, and re-arranging the terms in
this expression, we can obtain

1
P

P−1∑
p=0

∑

n,d

E[Q(d)
n [pT]]

≤
K

∑

n,d

Un,d(M) +
B1

T
+

(b1 + b2)
2

+
E[V (Y[0])]

2PT

ρc

Also noting that Q
(d)
n [t + k] ≤ Q

(d)
n [t] + kM for each n, d,

we have

1
T

T−1∑
τ=0

∑

n,d∈N
E[Q(d)

n [pT + τ]] ≤ MTN2,

which, when combined with the previous inequality, yields

lim sup
P→∞

1
PT

PT−1∑

k=0

∑

n,d∈N
E[Q(d)

n [k]]

≤ lim sup
P→∞

P−1∑
p=0

∑

n,d

E[Q(d)
n [pT]] + MTN2

≤
K

∑

n,d∈N
Un,d(M) +

B1

T
+

(b1 + b2)
2

ρc
+ MTN2

≤ C1K,

for some C1 when K is large enough.
Next, we re-organize the terms in (13)-(16) in a different

way to obtain

1
PT

PT−1∑

k=0

E

 ∑

n,d∈N
Un,d(X(d)

n [k])

≥
∑

n,d∈N
Un,d(

?
x

(d)

n (ε))−
B1
T + (b1+b2)

2 − E[V (Y[0])]
2PT

K
.

Also revoking Jensen’s inequality, we have

1
PT

PT−1∑

k=0

E

 ∑

n,d∈N
Un,d(X(d)

n [k])

≤
∑

n,d∈N
Un,d

(
1

PT

PT−1∑

k=0

E[X(d)
n [k]]

)
.

Combining these two results as letting P →∞, we have
∑

n,d∈N
Un,d(x̄(d)

n) ≥
∑

n,d∈N
Un,d(

?
x

(d)

n (ε))− C2

K
,

where x̄
(d)
n is as defined in the statement of the theorem, and

C2 is a bounded number. This completes the proof.
Theorem 2 reveals the effect of the errors and relaxation

in the operation of the scheduler. In particular, we see that,
when γ = ψ = 0, and δ > 0, the cross-layer scheme achieves
optimal performance. Also, we observe that the effect of ψ
can be detrimental unless it is significantly smaller than δ.
In comparison, the effect of γ appears to be milder if it can
be made small. Ideally, we would like to design schedulers
with γ = ψ = 0 in which case optimal performance can be
guaranteed. In the next section, we propose one such scheduler
that is applicable to second order interference model, but can
also be extended to higher order interference models.

V. ALGORITHM DESIGN

In Section III, we studied the throughput and fairness prop-
erties of a cross-layer mechanism that can be applied to a large
class of interference models. We observed that a scheduler
with δ > 0, and γ = ψ = 0 achieves optimal performance.
In this section, we focus on the secondary interference model
and outline a distributed low-complexity algorithm with these
parameters. We will also note a modification to our algorithm
that yields γ > 0.

Our approach involves the sequential operation of two
algorithms, which we refer to as PICK and COMPARE: The
PICK algorithm is a randomized, distributed algorithm that
yields a feasible schedule R[t] satisfying (6) in finite time.
The COMPARE algorithm compares the total weights of the
old schedule S[t] with the new schedule R[t] according to (7)
in a distributed manner. An important feature of the COMPARE
algorithm is the use of the conflict graph of the two schedules.
On the conflict graph, a spanning tree can be constructed
in a distributed manner and used for comparison of the
weights of the two schedules in polynomial time. The conflict
graph enables a natural partitioning of the network, whereby
decisions can be made independently in different partitions in
a distributed manner. As we will show, the operations on the
conflict graph can be mapped to the actual network operations
owing to the special structure of the problem.

The schedule used for packet transmissions is updated
at the beginning of each stage. Throughout a stage, packet
transmissions are performed according to the schedule updated
at the beginning of that stage. In parallel with the packet
transmissions, PICK and COMPARE algorithms are imple-
mented. Since the same medium is shared, the data packet

7

transmissions can collide with the control messages generated
by these algorithms. To prevent such collisions, time is divided
into two intervals, namely the control signalling interval (CSI)
during which control messages are locally communicated,
and the data transmission interval (DTI) during which data
packets are transferred (see Figure 1). Notice that both PICK
and COMPARE algorithms operate during CSI, while queue-
lengths are updated during DTI. It is assumed that all the
nodes are synchronized to the same CSI/DTI division of time.
This assumption can be relaxed by adding a buffer interval
between CSI and DTI to accommodate propagation delays.
Alternatively, the control signalling can be performed over
an orthogonal channel through frequency division. Finally,
we assume that each transceiver can perform carrier sensing
during transmission without the need to decode its reception.

Fig. 1. Division of time into data transmission and control signalling
intervals.

It is important to note that in our algorithm the overhead
introduced by the control signalling can be made arbitrarily
small by increasing the length of a stage to a high enough
value. This fact follows from the fixed amount of control mes-
sages required by our algorithm per stage. Thus, the number
of control messages versus the data messages in a stage can
be made negligible by increasing the stage duration. This will
naturally result in slower convergence, but the stability and
fairness results of Theorem 2 will continue to hold.

We assume that each node has a unique ID number picked
from a totally ordered set. Let ID(n) denote the ID number
of node n. Then, unique ID numbers can be assigned to links,
denoted by ID(n,m) = ID(m,n) for link (n, m). This
assumption is essential for each node (and link) to identify
its neighboring nodes (and links), and will be used in the
distributed implementation of our algorithms.

A. PICK Algorithm

In this section, we present a distributed algorithm that
randomly picks a feasible allocation R with the property that
any feasible allocation has a positive probability of being
chosen as required by (6). In the description of the algorithm,
when we say a node withdraws, we mean that the node stops
its search for a feasible link during the current stage, but
continues to listen to other transmissions. The algorithm makes
sure that each node has a positive probability of attempting
transmission at the beginning of the algorithm. The idea is to
send Ready-to-Send (RTS) and Clear-to-Send (CTS) packets
including the ID numbers of the nodes in order to create a
feasible allocation. By appending ID numbers to the RTS/CTS
packets, the algorithm enables each node to have a list of
those links in its local neighborhood that are picked by the
algorithm.

Definition 6 (PICK Algorithm): At every node n ∈ N per-
form the following steps:

(A1) In step 1, with probability pn ∈ [α, 1) for some
α ∈ (0, 1), n transmits a (RTS) message.

(A1a) If n senses another transmission during its (RTS)
transmission, it withdraws.

(A2a) If n does not sense another transmission, in step 2,
it chooses one of its neighbors, say m, randomly with equal
probabilities, and transmits (RTS, ID(m)).

(A2b) If m observes a collision, it withdraws.
(A3a) If m gets n’s message, in step 3, it sends back a

(CTS) message.
(A3b) If m senses another transmission during its (CTS)

transmission, it withdraws.
(A3c) If n observes an idle, it withdraws.
(A4a) If m does not sense another transmission during its

(CTS) transmission, in step 4, it transmits (CTS, ID(n,m)).
(A4b) If n does not receive m’s response, it withdraws.
(A5) In step 5, n transmits (CTS, ID(n,m)), and the link

between n and m is activated; link (n,m) is added to R. ¦
The algorithm assures between steps (A1) and (A2a), that

no two transmitters are neighboring each other; at (A2b), that
no transmitter is a neighbor to a receiver; between (A3a) and
(A4a), that no two receivers are neighbors. Finally, during
(A4a) and (A5), the picked link is announced to the neighbors
of the receiver and the transmitter, respectively.

Notice that the algorithm need not result in a maximal
feasible allocation5 at its termination. This does not influence
the results of Theorem 2, but will have an effect on the rate of
convergence of the algorithm. With a simple modification, the
above algorithm can be extended to obtain a maximal feasible
allocation and hence better convergence properties.

Proposition 1: The above PICK algorithm satisfies
(i) The resulting R is a feasible allocation.
(ii) It takes at most 5 transmissions per node to terminate.
(iii) The probability of picking any feasible allocation is

at least (min(α, 1− α)/dmax)N
> 0, where dmax is the

maximum degree6 of G. In particular, since
?

SW [t] is a
feasible schedule, we have P(R[t] =

?

SW [t]) ≥ (min(α, 1 −
α)/dmax)N > 0.

(iv) At the termination, for any link (n, m) ∈ L, all the
neighbors of n and m are aware of (n,m)’s state, i.e., know
whether (n,m) is in R or not.

Proof: Step (A1a) assures that if two neighboring nodes
attempt to transmit, they sense each other and withdraw. In
Step (A2b), the event that more than one neighbors of a
node are attempting to transmit is detected, and in that event
all of the transmitters withdraw from transmission in Step
(A3c). Finally, step (A3b) guarantees that two neighbors do
not become receiving ends of two different links. Thus, all the
events that leads to interfering links are eliminated in these
steps, and the resulting allocation must be feasible, which
proves (i). Claim(ii) follows immediately from the construction

5A maximal feasible allocation is a set of links to which no new link that
does not interfere with any of the existing links can be added.

6deg(n) , |{m ∈ N : (n, m) ∈ L, or (m, n) ∈ L}|.

8

of the algorithm.
To prove Claim(iii), note that if the initially picked set of

links in steps (A1) and (A2a) happen to be feasible, they are
not eliminated throughout the algorithm, because the algorithm
is designed to eliminate only those links that interfere with
each other. Thus, we are interested in finding a lower bound
on the probability of picking a given feasible schedule, say
W ∈ S, at the start. Thus, we need to have exactly |W |
nodes, one from each link in W choose to transmit in step (A1)
(which happens with probability α|W |), and all the remaining
nodes must be silent (which happens with probability ≥ (1−
α)N−|W |). If each of those nodes which chose to transmit,
picks its outgoing link that lies in W for transmission in
step (A2a) (which happens with probability ≥ (α/dmax)|W |),
then the resulting schedule will be exactly W. Hence, the
probability that PICK yields a given feasible schedule W is
≥ (α/dmax)|W |(1 − α)N−|W | ≥ (min(α, 1 − α)/dmax)N ,
where the last step follows from dmax ≥ 1.

Claim(iv) follows from the fact that the links that are
activated are announced to neighboring nodes via the message
(CTS, ID(n,m)), and therefore all the neighbors know the
IDs of the activated links in their two hop neighborhood.
We note that this algorithm does not depend on the queue-
lengths, which greatly simplifies its implementation, because
no queue-length information exchange is necessary between
neighboring nodes. Further, due to part (iii), the best allocation
must also have a positive probability. This fact together with
parts (i)-(iii) prove that the algorithm is actually sufficient for
Theorem 2 to hold. At the end of PICK, R gives a feasible
allocation, that is known only locally. In particular, due to
part (iv) of Proposition 1, every node knows those links of its
neighbors that are in R.

B. COMPARE Algorithm

In this section, we propose and analyze a distributed al-
gorithm that compares the total weight associated with two
feasible schedules, S[t] and R[t], with local control signal
transmissions, and choose the one with the larger weight as
the schedule to be used during the next stage. We note that
this algorithm applies to interference models other than the
secondary interference model. In the following, we will omit
the time index for ease of presentation.

The algorithm relies on constructing the conflict graph
associated with S and R which contains information about
interfering links in the two schedules. The conflict graph,
G′(S,R) = (N ′,L′), of S and R can be generated as
follows7: Each link l in S ∪R corresponds to a node in the
conflict graph, and if links l1 ∈ S and l2 ∈ R interfere with
each other, an edge is drawn between the nodes corresponding
to l1 and l2 in the conflict graph. Note that, since both S and
R are feasible schedules, no two links in the same schedule
(S or R) can interfere with each other, i.e., there is no edge
between two nodes of the same schedule in G′. Every node in
G′ can compute its own weight [as defined in (3)], and has a
list of its neighbors in G′ by part (iv) of Proposition 1. We will

7We use N ′, L′ to denote the cardinalities of N ′,L′. Also, we will refer
to G′(S,R) simply as G′ for convenience.

develop the algorithms using the conflict graph G′ and show
at the end of this section that the special structure enables us
to map the operations to the graph G.

Our COMPARE Algorithm is composed of two procedures
that are implemented consecutively: FIND SPANNING TREE
and COMMUNICATE & DECIDE. The FIND SPANNING TREE
procedure finds a spanning tree for each connected component
of G′ in a distributed fashion. Then, the COMMUNICATE &
DECIDE procedure exploits the constructed tree structure to
communicate and compare the weights of the two schedules
in a distributed manner.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

���������� ����������

Fig. 2. 8x10 grid network example with two feasible schedules indicated
by solid and dashed bold links. The conflict graph decomposes into 6
disconnected components.

To illustrate the definitions and operation of the algorithms
we consider the grid network depicted in Figure 2. In this
network, nodes are located on the corner points of a grid, and
each interior node has four links incident to it. To demonstrate
the construction of the conflict graph, suppose we are given
two feasible schedules, S and R. In the figure, solid bold links
belong to schedule S, while dashed bold links are in R. We use
dash-dotted thin lines to connect the links of the two schedules
that interfere with each other. In general, it is not necessary
that the conflict graph be connected. For example, in Figure 2,
we observe six disconnected components. The conflict graph
corresponding to the largest connected component is given in
Figure 3, where links in S are drawn as circular dots, while
links in R are drawn as square dots.

Remark 1: Disconnected components of the conflict graph
can decide on which schedule to use, independent of each
other. This is possible because by construction of the conflict
graph the resulting schedule is guaranteed to be feasible even
if the choices of two disconnected components are different.
This decomposition contributes to the distributed nature of
the algorithm. Namely, the size of the graph within which
the comparison is to be performed is likely to be reduced.
Notice that with this approach, the chosen schedule may be
a combination of the two candidate schedules, S and R,
because different connected components may prefer different
schedules. This merging operation will result in a schedule
that is better than both S and R.

Based on this remark, henceforth our algorithm will focus
on the decision of a single connected component.

1) FIND SPANNING TREE Procedure: The object of the
FIND SPANNING TREE procedure is to find, in a distributed

9

fashion, a spanning tree for each of the connected components
in the conflict graph. In our model, every node in the conflict
graph G′ corresponds to an undirected link in the original
graph G, and has a unique ID8. In order to compare two link
IDs, we use lexicographical ordering9.

Our distributed FIND SPANNING TREE procedure is based
on token generation and forwarding operations. For the con-
struction of a spanning tree, at least one token needs to be
generated within each connected component. This can be
guaranteed by requiring every node in the conflict graph that
has the lowest ID number among its neighbors to generate a
token. Each token, carrying the ID of its generator, performs a
depth-first traversal (cf. [10]) within the connected component
to construct a spanning tree. This token progressively adds
nodes into its spanning tree while avoiding the construction
of cycles. An example is depicted in Figure 3 for the largest
connected component of Figure 2.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

X

token
minimum

6

3

10

5

2
4

7 8

11

9

12

1

Fig. 3. A connected component of the conflict graph from which the link
crossed is eliminated to obtain a spanning tree. The path of the minimum
token is indicated with arrows. The nodes are labeled with numbers for future
reference.

The above procedure focuses on the operation of a single
token generated at one of the nodes within the connected
component. In general, there may be multiple tokens generated
within the same connected component. Each token attempts to
form its spanning tree labeled with its ID number (i.e. the ID
number of the token’s generator). Since only one spanning
tree is required at the end of the procedure, our algorithm
is designed to keep the spanning tree with the smallest ID
number, while eliminating the others. This elimination is
performed when the token of a spanning tree enters a node that
has already been traversed by another token. If the incoming
token has smaller ID, then the token ignores the previous token
and continues the construction of its tree, and if its ID is
larger, then it is immediately deleted. We have the following
proposition for this algorithm.

Proposition 2: Consider the conflict graph G′ = (N ′,L′),
and let d′max denote the maximum degree of G′. The FIND
SPANNING TREE Procedure finds a spanning tree of all

8In [16], it was shown that unique IDs are required to be able to find a
spanning tree in a distributed fashion.

9Without loss of generality, assume ID(n) < ID(m) and ID(i) <
ID(j) : If ID(n) < ID(i), then ID(n, m) < ID(i, j) for all m, j;
and if ID(n) = ID(i) and ID(m) < ID(j), then ID(n, m) < ID(i, j).

components of the conflict graph in O(d′maxL′) time10, and
with O(d′maxN ′) message exchanges for each n′ ∈ N ′. In
particular, at the termination of the procedure, every node
n′ ∈ N ′ has a list of its neighbors in the constructed spanning
tree.

Proof: To prove that the constructed subgraph by the
smallest token is in fact a spanning tree, we need to show that
every node is in the formed subgraph, and that the subgraph
contains no cycles. To argue that every node must be in the
subgraph, let us assume, to arrive at a contradiction, there is a
node, say z′ ∈ N ′, that is not in the subgraph but is within the
connected component. If any of z′’s neighbors had held the
token at any time, then it must have attempted to forward the
token to z′ before it sends the token back to its parent. But,
if a token attempt is made to z′, it will ACCEPT it because it
is the first time it encounters such an attempt. This argument
implies that none of the neighbors of z′ can be in the subgraph.
If the same arguments are made repeatedly, this implies that
the whole subgraph must be empty. But, we know that the node
that generates the token is in the subgraph by default. Hence,
we get a contradiction, and the subgraph must contain every
node within the connected component. The argument that the
subgraph contains no cycles follows from the fact that every
node ACCEPTs only those token transmissions that do not
form a cycle. Thus, the resulting subgraph must be acyclic.

The procedure is constructed so that whenever a token
with a larger ID crosses any node of the spanning tree being
constructed by a token with a smaller ID, the token with
the larger ID along with its spanning tree is eliminated. By
definition, a spanning tree has to contain every node and thus
all the tokens must meet with the spanning tree of the smallest
token sometime. Therefore, by the end of the procedure, only
the spanning tree of the smallest token survives.

To compute the complexity, note we take into account
the complexity of resolving potential collisions of tokens.
It is not difficult to see that such each collision can be
resolved in O(d′max) message exchanges. Since, an operation
of O(d′max) operations must be performed for 2L′ times, we
need O(d′maxL′) time for the operation to complete. However,
each node will only transmit O(d′max) messages in the process
only when it is receiving and transmitting a token. Since,
there are at most O(N ′) tokens in the system, the number
of messages transmitted by each node is O(d′maxN ′).

We note that the FIND SPANNING TREE procedure that we
described here is deterministic and achieves γ = 0 in the
context of the generic cross-layer scheme of Definition 3.
Alternatively, a randomized gossip style mechanism can be
used that yields γ > 0 (see [28]). Theorem 2 can be used
to understand the fairness characteristics of both the these
approaches. While our approach lead to optimal performance,
the latter approach may be easier to implement with acceptable
degree of suboptimality.

2) COMMUNICATE & DECIDE Procedure: We use the
spanning tree formed on the conflict graph to compare weights.
The idea is to convey the necessary information from the

10f(n) = O(g(n)) means that there exists a constant c < ∞ such that
f(n) ≤ cg(n) for n large enough.

10

leaves up to the root of the tree (i.e. COMMUNICATE Proce-
dure) so that the schedule with the higher weight is chosen (cf.
(7)), and then send back the decision to the leaves (i.e. DECIDE
Procedure). The COMMUNICATE & DECIDE procedure can be
explained in two parts as follows:

COMMUNICATE: The leaves communicate their weights to
their parents. If the parent is in S it adds its weight to the sum
of the weights announced by its children. If, on the other hand,
it is in R it subtracts its weight from the sum of its children’s
weights. The resulting value becomes the new weight of the
parent. Then, the parent acts as a leaf with the updated weight
in the next iteration. This recursive update is repeated until
the root is reached.

DECIDE: At the end of COMMUNICATE, the weight of
the root of the spanning tree will be

∑
l∈S wl −

∑
l∈R wl.

Depending on whether the root’s weight is positive or negative,
the root decides S or R, respectively, as the better schedule,
and broadcasts its decision down the tree.

Fig. 4. The iterative communication of the weights of the two schedules
from the leaves to the root for the spanning tree of Figure 3.

An example of this procedure is provided in Figure 4 for
the spanning tree given in Figure 3. We have the following
complexity result for this procedure.

Proposition 3: Consider the conflict graph G′ = (N ′,L′),
and let d′max denote the maximum degree of G′. The COM-
MUNICATE & DECIDE procedure correctly finds the schedule
with the larger weight in O(d′maxL′) time.

Proof: The algorithm is designed so that when node
n′ transmits its current sum to its parent, where the value
of the sum is the difference of the weights of schedule S
and R only for the subtree rooted at n′. Thus, sum at the
root of the spanning tree is the difference of two weights of
schedule S and R. Decision is a simple comparison of the
sign of this sum. This decision is broadcast to the children of
the root, and hence all the nodes in the connected component
knows about the better schedule and can switch to it by the
end of the procedure. The depth of the spanning tree can be at
most O(L′) and each collision resolution operation can take
at most O(d′max) time. Thus, the whole algorithm terminates
in O(L′d′max) time.

Notice that the complexity results in the propositions are
given in terms of G′. We can translate them into bounds on
G through the following inequalities: L′ < N2, d′max < N .

Propositions 1, 2 and 3, together with Theorem 2 yields the
following result.

Theorem 3: The distributed implementations of PICK and
COMPARE Algorithms designed for the secondary interference
model asymptotically achieve throughput-optimality and fair-
ness with O(N3) time and O(N2) message exchanges per
node, per stage. ¤
Before we complete the section, we make a few important
remarks on the operation and extension of the algorithms.

Remark 2: The algorithms we develop in this section op-
erate over the conflict graph G′. These operations can be
transformed into operations in the actual graph G. Such a
transformation would be difficult for a general conflict graph.
However, in our scenario the graph has a special structure
that enables the mapping. The critical observation is that
transmissions within a feasible schedule has no interference.
Thus, links that form S and R can perform operations in
G′ by partitioning CSI (cf. Figure 1) into two disjoint time
intervals. During the first interval, only links that make up
S communicate, while in the second interval only nodes
that make up R communicate. The operation of each link
can easily be mapped into operations at its two end nodes
by assigning one node to each operation, who will then
coordinate the operation. With such a separation of time, the
operations described for the conflict graph can be translated
into operations in the actual network.

Remark 3: Recall from Remark 1 that the conflict graph is
likely to be composed of multiple disconnected components,
which increases the distributed nature of the algorithms. Even
though we did not pursue this direction here, this likelihood
can be increased by dynamically modifying the activation
probabilities, {pn}n, in the PICK Algorithm so that the picked
schedule has more disconnected components. This way, the
localized nature of the algorithm can be improved.

VI. SIMULATIONS

In this section, we provide simulation results for the
distributed algorithms developed in Section V for the grid
topology (see Figure 2). We use the notation [i, j] to refer to
the node at the ith row and jth column of the grid. Throughout,
we simulate utility functions of the form Ui(x) = γi log(x),
which corresponds to weighted proportionally fair allocation
(see [21], [38]).

We first consider a network of size 6x6, with four flows:
Flow-1 from [1, 1] to [6, 6], Flow-2 from [5, 2] to [6, 3], Flow-
3 from [5, 5] to [5, 1], and Flow-4 from [4, 1] to [1, 4]. Here,
we are interested in the evolution of the throughputs of each
flow for K = 100 and γi = 0.5 for each i ∈ {1, 2, 3, 4}.
The simulation results are depicted in Figure 5. We observe
that the throughputs of the flows converge to different values
depending on their source-destination separation. For example,
Flow-2 achieves the highest throughput since its source is
only two hops from its destination. The fluctuations in the
evolutions are due to the random nature of the algorithm,
which tracks the queue-length evolutions.

Next, we simulate a 10x10 network with two flows: Flow-1
from [1, 1] to [8, 9], and Flow-2 from [9, 2] to [2, 10]. Here, we

11

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.05

0.1

0.15

0.2

0.25

Throughput evolution for 6x6 Network with 4 flows

Number of Stages

T
hr

ou
gh

pu
t a

ch
ie

ve
d

Flow−1
Flow−2
Flow−3
Flow−4

Fig. 5. The throughput evolution of the 6x6 network for K = 100, γi = 0.5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Throughput of Flow−1

T
ho

ug
hp

ut
 o

f F
lo

w
−2

K=10 K=20 K=40 K=60 K=80

K=100

(0,1) (.1,.9)
(.2,.8)

(.3,.7)

(.4,.6)

(.5,.5)

(.6,.4)

(.7,.3)

(.8,.2)

(.9,.1)

(γ
1
,γ

2
)

Fig. 6. Throughputs of flows with varying K and (γ1, γ2).

focus on the throughputs achieved for the flows as a function
of K with varying γi for each flow. We aim to observe the
mean flow rates as functions of K and (γ1, γ2). Notice that
each (γ1, γ2) combination corresponds to a different weighting
for the weighted-proportionally fair allocation. Thus, for a
fixed K, the throughputs corresponding to different (γ1, γ2)
combinations actually outline the rate region that the algorithm
achieves for that K. Then, as K grows Theorem 2 implies that
this region grows at a decreasing rate, until it converges to the
stability region C.

We performed simulations for K varying from 10 to 100,
and (γ1, γ2) ranging from (0, 1) to (1, 0) with γ1 + γ2 = 1 at
each intermediate point. The simulation results are provided
in Figure 6. We observe that for a given K, the rate region
is a convex region. Also, as K grows, the region expands at
a decreasing rate agreeing with our expectations. We further
note that with this algorithmic method, the stability region of
a wireless network, that is otherwise difficult to find, can be
determined with high accuracy.

VII. CONCLUSIONS

In this work, we provided a framework for the design of
distributed cross-layer algorithms for full utilization of multi-
hop wireless networks. To that end, we first described a generic
scheduling-routing-congestion control mechanism that allows
for various imperfections and relaxation in its operation which
facilitates its distributed operation in wireless networks. We

studied the stability and fairness characteristics of the generic
cross-layer algorithm, and explicitly characterized the effect
of different type of imperfections on its performance. We saw
that certain types of imperfections are more detrimental than
other, which revealed the critical components in the design of
algorithms.

Based on this foundation, we developed specific distributed
algorithms for the secondary interference model. For this
model, existing throughput-optimal strategies require that an
NP-hard problem be solved by a centralized controller at every
time instant. In this work, we showed that this is not necessary,
and full utilization of the network can be achieved with
distributed algorithms having only polynomial communication
and computational complexity.

An important byproduct of our approach is the use of the
developed cross-layer algorithms to find (with high accuracy)
the stability region of ad-hoc wireless networks, that are
otherwise difficult to characterize.

APPENDIX

We defined the notion of capacity (stability) region in
Definition 2. A characterization of this region in terms of
flow conservation and feasibility constraints is provided by
Tassiulas and Ephremides in their seminal work [41], which
is reproduced in the following proposition to be used in the
proof of Theorem 1.

Proposition 4: Let G = (N ,L) be a given network and S
be the set of feasible allocations. The capacity (or stability)
region C of the network is given by the set of vectors r =
(r(d)

n)n,d∈N for which there exists z
(d)
(n,m) ≥ 0 for all (n,m) ∈

L and d ∈ N , such that both the flow conservation constraints
at the nodes and the feasibility constraints are satisfied, i.e.,

(C1) For all n ∈ N and d ∈ N\{n}, we have

r(d)
n +

∑

k:(k,n)∈L
z
(d)
(k,n) =

∑

m:(n,m)∈L
z
(d)
(n,m),

(C2)

[∑

d∈N

(
z
(d)
(n,m) + z

(d)
(m,n)

)]

(n,m)∈L
∈ Conv(S). 11

Proof of Theorem 1:

Before the start the proof, we note that it closely follows the
technique of [27], except that it is extended to multi-hop flows
and more general arrival processes. The multi-hop extension
adds a routing component to the mechanism and add some
technical complications to the proof. More importantly, in this
work we further include congestion control into the framework
of [27] to investigate the fairness characteristics of the joint
congestion control, scheduling and routing mechanism.

We start by deriving an upper bound on the single-step mean
drift of the Lyapunov function, ∆V

(1)
t (Y), for a given Y =

11Conv(A) denotes the convex hull of set A, which is the smallest convex
set that includes A. The convex hull is included in view of the possibility of
timesharing between feasible allocations.

12

(Q,S).
∆V

(1)
t (Y)

= E
[‖Q[t + 1]‖22 − ‖Q[t]‖22 |Y[t]

]

≤
∑

n,d

E
[((

Q(d)
n [t]− S

(d)
out(n)[t]

)+

+ X(d)
n [t]

+S
(d)
into(n)[t]

)2

− (Q(d)
n [t])2 |Y[t]

]

=
∑

n,d

E
[(

Q(d)
n [t]− S

(d)
out(n)[t] + U

(d)
out(n)[t] + X(d)

n [t]

+S
(d)
into(n)[t]

)2

− (Q(d)
n [t])2 |Y[t]

]

=

∑

n,d

E
[(

Q(d)
n [t]− S

(d)
out(n)[t] + X(d)

n [t]

+S
(d)
into(n)[t]

)2

− (Q(d)
n [t])2 |Y[t]

] (17)

+
∑

n,d

2E
[
U

(d)
out(n)[t]

(
Q(d)

n [t]− S
(d)
out(n)[t] + X(d)

n [t]

+S
(d)
into(n)[t]

)
+

(
U

(d)
out(n)[t]

)2

|Y[t]
](18)

where U
(d)
out(n)[t] denotes the amount of unused service by node

n to transmit packets of type d in slot t. Note that U
(d)
out(n)[t]

can be non-zero only when Q
(d)
n [t] is low. Also, since the

service rate over each link is upper-bounded by one, U
(d)
out(n)[t]

must also be upper-bounded by the maximum degree dmax of
the network. First, we show that (18) is upper-bounded.

(18) ≤
∑

n,d

(
2E

[
U

(d)
out(n)[t]Q

(d)
n [t] |Y[t]

]

+4dmax + 2λ(d)
n + d2

max

)

≤ N2(3d2
max + 6dmax) =: b1,

where, in the last step, we used the fact that U
(d)
out(n)[t] ≤ dmax

and that λ
(d)
n ≤ dmax.

Next, we study (17). We can re-write it in inner-product
form after cancelations

(17) = 2E [〈Q[t],Sin[t] + X[t]− Sout[t]〉
+‖Sin[t] + X[t]− Sout[t]‖22 |Y[t]

]

≤ 2E [〈Q[t],Sin[t] + X[t]− Sout[t]〉 |Y[t]] + b2, (19)

where b2 is a finite constant since: the service rate into or out
of any node is bounded by dmax; and the second moment of
the arrival process is assumed to be bounded.

Next, we study the expectation in (19) in further detail.
We omit the the time index [t] in the following derivation for
notational convenience.

E [〈Q,Sin + X− Sout〉 |Y] = 〈Q,
?

Sin +λ− ?

Sout〉
+〈Q,Sin−

?

Sin +Sout−
?

Sout〉
(20)

where
?

SW is chosen according to (4). Since λ ∈ C(ε),
Proposition 4 implies that there exists a non-negative vector

Ŝ =
(
Ŝ

(d)
(n,m)

)d∈N

(n,m)∈L
such that:

[∑

d∈N
Ŝ

(d)
(n,m)

]

(n,m)∈L
∈

Conv(S); and

λ(d)
n + Ŝ

(d)
into(n) = Ŝ

(d)
out(n) − ε, ∀n, d 6= n,

which can be written compactly as λ = Ŝout − Ŝin − ε1 in
vector form, where 1 is a vector of all ones. Substituting this
into the first inner product in (20) yields.

〈Q,
?

Sin +λ− ?

Sout〉 = 〈Q, Ŝout − Ŝin〉
−〈Q,

?

Sout −
?

Sin〉 − ε〈Q,1〉
Note that

〈Q,
?

Sout −
?

Sin〉 =
∑

n,d

Q(d)
n

(
?

S
(d)

out(n) −
?

S
(d)

into(n)

)

=
∑

(n,m)∈L

∑

d

?

S
(d)

(n,m)

(
Q(d)

n −Q(d)
m

)

=
∑

(n,m)∈L

?

S(n,m) max
d

∣∣∣Q(d)
n −Q(d)

m

∣∣∣

(a)

≥
∑

(n,m)∈L
Ŝ(n,m) max

d

∣∣∣Q(d)
n −Q(d)

m

∣∣∣

≥
∑

(n,m)∈L

∑

d

Ŝ
(d)
(n,m)

(
Q(d)

n −Q(d)
m

)

= 〈Q, Ŝout − Ŝin〉,
where the inequality (a) follows from (4). Substituting this in
the previous expression yields

〈Q,
?

Sin +λ− ?

Sout〉 ≤ −ε〈Q,1〉
≤ − ε

dmax
〈Q,

?

Sout −
?

Sin〉,

where the last inequality follows from the fact that
?

Sout(n)

− ?

Sin(n)≤ dmax for all n. We substitute this upper bound in
(20) with the new notation: Ψ[t] := 〈Q[t],Sout[t] − Sin[t]〉,
and

?

Ψ [t] := 〈 Q[t],
?

Sout [t]− ?

Sin [t]〉, and Ψ̃[t] :=
〈Q[t],Rout[t]−Rin[t]〉.

E [〈Q[t],Sin[t] + X[t]− Sout[t]〉 |Y[t] = Y]

≤ − ε

dmax

?

Ψ [t]+
?

Ψ [t]−Ψ[t]

We use this bound in (19) and bound the T -step mean drift as
∆V

(T)
t (Y)

≤ −2
ε

dmax

T−1∑
τ=0

E[
?

Ψ [t + τ] |Y[t] = Y] + Tb2 (21)

+
T−1∑
τ=0

E[
?

Ψ [t + τ]−Ψ[t + τ] |Y[t] = Y] (22)

To bound (21) note that
T−1∑
τ=0

E[
?

Ψ [t + τ] |Y[t] = Y] ≥
T−1∑
τ=0

(?

Ψ [t]− τb3

)

≥ T
?

Ψ [t]− T 2

2
b3, (23)

13

where the first inequality follows from the fact that in a single
time slot, each queue can change by at most a bounded value,
and therefore there exists a constant b3, such that | ?

Ψ [τ +
1]− ?

Ψ [τ]| ≤ b3 for any τ.
Next, we are interested in upper-bounding (22). For nota-

tional convenience, let us define∇[t] :=
?

Ψ [t]−Ψ[t]. Hence, we
are interested in upper-bounding

∑T−1
τ=0 E[∇[t+τ]|Y[t] = Y].

To that end, let us define

T0 = inf{τ ≥ 0 : R[t + τ] =
?

S [t + τ]}
T1 = inf{τ ≥ T0 : 〈Q[t + τ],Sout[t + τ]− Sin[t + τ]〉

< max (〈Q[t + τ],Sin[t + τ − 1]− Sout[t + τ − 1]〉,
(1− γ)〈Q[t + τ],Rout[t + τ]−Rin[t + τ]〉)}.

Thus, T0 is the first slot after t when the random schedule
R picked according to (6) is equal to the optimum schedule;
and T1 is the first slot after T0 when the condition in (7)
is violated. Note that in the interval between T0 and T1, the
system is well-behaved, and no undesired event such as that
in (7) occurs. Finally, let us define T2 := T −min (T, T1) as
the remaining time after T1 until the end of T slots, if any.
The idea is to show that if T is sufficiently large, the duration
between T0 and T1 will dominate the interval of duration T.
Next, we make this argument rigorous.

First note that for any τ ≥ 0, we have

∇[t + τ] ≤ 2
?

Ψ [t + τ] ≤ 2
?

Ψ [t] + 2τb3.

Next, note that at τ = T0, we have

〈Q[t + T0],Sout[t + T0]− Sin[t + T0]〉
≥ (1− γ)〈Q[t + T0],

?

Sout [t + T0]−
?

Sin [t + T0]〉
due to (7). This is the same as

∇[t + T0] ≤ γ
?

Ψ [t + T0]

≤ γ
?

Ψ [t + T0] + γT0b3

Then, in the interval when τ ∈ [T0, T1], we have that

∇[t + τ] ≤ γ
?

Ψ [t] + 2γτb3

Hence, we can write

T−1∑
τ=0

∇[t + τ] ≤ 2(
?

Ψ [t] + γτb3)(min(T0, T) + T2)

+γ
?

Ψ [t]T + 2γT 2b3.

Note that we have E[min(T0, T)] ≤ 1/δ. Also,
E[min(T, T1)] ≥ (1 − ψT)T. Therefore, E[T2] ≤ ψT 2.
Thus, we can write

E

[
T−1∑
τ=0

∇[t + τ] |Y[t] = Y

]
≤ T

?

Ψ [t]
(

ψT +
1

δT
+ 2γ

)

+2Tb3

(
1
δ

+ ψT 2

)

+2γT 2b3

Substituting (23) in (21), and the previous upper bound in (22)
yields

∆V
(T)
t (Y) ≤ −T

?

Ψ [t]
(

2
ε

dmax
− ψT − 1

δT
− 2γ

)

+2
(

ε

dmax
+ γ

)
T 2b3

+2
(

1
δ

+ ψT 2

)
Tb3

Letting T = 1√
δψ

, we have

∆V
(T)
t (Y) ≤ −2T

?

Ψ [t]

(
ε

dmax
−

√
ψ

δ
− γ

)
+ B1

≤ −cT

(
ε

dmax
− γ −

√
ψ

δ

) ∑

n,d

Q(d)
n + B1,

where c and B1 are bounded positive valued numbers. This
completes our proof.

REFERENCES

[1] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
and P. Whiting. Scheduling in a queueing system with asynchronously
varying service rates, 2000. Bell Laboratories Technical Report.

[2] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar,
and P. Whiting. Scheduling in a queueing system with asynchronously
varying service rates. Probability in the Engineering and Informational
Sciences, 18:191–217, 2004.

[3] E. Arikan. Some complexity results about packet radio networks. IEEE
Transactions on Information Theory, 30:681–685, 1984.

[4] S. Asmussen. Applied Probability and Queues. Springer-Verlag, New
York, NY, 2003.

[5] M. Bayati, B. Prabhakar, D. Shah, and M. Sharma. Iterative scheduling
algorithms. In Proceedings of IEEE INFOCOM, 2007.

[6] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, Belmont, MA, 1997.

[7] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu. Joint asynchronous
congestion control and distributed scheduling for wireless networks.
Proceedings of IEEE Infocom 2006.

[8] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through
maximal scheduling in wireless networks. In Proceedings of the Allerton
Conference on Control, Communications and Computing, 2005.

[9] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Jointly optimal
congestion control, routing, and scheduling for wireless ad hoc networks.
In Proceedings of IEEE Infocom, Barcelona, Spain, April 2006.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. M.I.T. Press, McGraw-Hill Book Company, London,
England, 2001.

[11] J. Dai and B. Prabhakar. The throughput of switches with and without
speed-up. In Proceedings of INFOCOM, 2000.

[12] A. Eryilmaz, E. Modiano, and A. Ozdaglar. Randomized algorithms for
throughput-optimality and fairness in wireless networks. In Proceedings
of IEEE Conference on Decision and Control, San Diego, CA, December
2006.

[13] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless
networks using queue-length based scheduling and congestion control.
In Proceedings of IEEE Infocom, volume 3, pages 1794–1803, Miami,
FL, March 2005.

[14] A. Eryilmaz and R. Srikant. Joint congestion control, routing and mac
for stability and fairness in wireless networks. IEEE Journal on Selected
Areas in Communications, special issue on Nonlinear Optimization of
Communication Systems, 14:1514–1524, August 2006.

[15] A. Eryilmaz, R. Srikant, and J. R. Perkins. Stable scheduling policies
for fading wireless channels. IEEE/ACM Transactions on Networking,
13:411–425, April 2005.

[16] R. G. Gallager, P. A. Humblet, and P. M. Spira. A distributed
algorithm for minimum-weight spanning trees. ACM Transactions on
Programming Languages and Systems, 5:66–77, 1983.

14

[17] P. Giaccone, B. Prabhakar, and D. Shah. Randomized scheduling
algorithms for high-aggregate bandwidhth switches. IEEE Journal on
Selected Areas in Communications, 21(4):546–559, 2003.

[18] C. Joo, X. Lin, and N. Shroff. Understanding the capacity region of the
greedy maximal scheduling algorithm in multi-hop wireless networks.
In Proceedings of IEEE INFOCOM, 2008.

[19] K. Jung and D. Shah. Low delay scheduling in wireless networks. In
Proceedings of ISIT, 2007.

[20] F. P. Kelly. Charging and rate control for elastic traffic. European
Transactions on Telecommunications, 8:33–37, 1997.

[21] F. P. Kelly, A. Maulloo, and D. Tan. Rate control in communication
networks: Shadow prices, proportional fairness and stability. Journal of
the Operational Research Society, 49:237–252, 1998.

[22] I. Keslassy and N. McKeown. Analysis of scheduling algorithms that
provide 100% throughput in input-queued switches. In Proceedings of
the Allerton Conference on Control, Communications and Computing,
2001.

[23] X. Lin and N. Shroff. Joint rate control and scheduling in multihop
wireless networks. In Proceedings of IEEE Conference on Decision
and Control, Paradise Island, Bahamas, December 2004.

[24] X. Lin and N. Shroff. The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks. In Proceedings of
IEEE Infocom, Miami, FL, March 2005.

[25] S. H. Low and D. E. Lapsley. Optimization flow control, I: Basic
algorithm and convergence. IEEE/ACM Transactions on Networking,
7:861–875, December 1999.

[26] M. Marsan, E. Leonardi, M. Mellia, and F. Neri. On the stability of
input-buffer cell switches with speed-up. In Proceedings of INFOCOM,
2000.

[27] E. Modiano, D. Shah, and G. Zussman. Maximizing throughput in wire-
less networks via gossiping. In ACM SIGMETRICS/IFIP Performance,
2006.

[28] D. Mosk-Aoyama and D. Shah. Computing separable functions via
gossip. In Proceedings IEEE PODC, Denver, 2006.

[29] M.J. Neely, E. Modiano, and C. Li. Fairness and optimal stochastic
control for heterogeneous networks. In Proceedings of IEEE Infocom,
pages 1723–1734, Miami, FL, March 2005.

[30] M.J. Neely, E. Modiano, and C.E. Rohrs. Dynamic power allocation
and routing for time varying wireless networks. In Proceedings of IEEE
Infocom, pages 745–755, April 2003.

[31] L. Peterson and B. Davie. Computer Networks: A Systems Approach.
Morgan Kaufmann Publishers, Second edition, 2000.

[32] S. Sanghavi, L. Bui, and R. Srikant. Distributed link scheduling with
constant overhead, 2006. Technical Report.

[33] G. Sasaki and B. Hajek. Link scheduling in polynomial time. IEEE
Transactions on Information Theory, 32:910–917, 1988.

[34] D. Shah. Stable algorithms for input queued switches. In Proceedings of
the Allerton Conference on Control, Communications and Computing,
2001.

[35] D. Shah and D. J. Wischik. Optimal scheduling algorithms for input-
queued switches. In Proceedings of IEEE INFOCOM, 2006.

[36] D. Shah and D. J. Wischik. Heavy traffic analysis of optimal scheduling
algorithms for networks, 2007. submitted for publication.

[37] S. Shakkottai and A. Stolyar. Scheduling for multiple flows sharing a
time-varying channel: The exponential rule. Translations of the AMS,
Series 2, A volume in memory of F. Karpelevich, 207:185–202, 2002.

[38] R. Srikant. The Mathematics of Internet Congestion Control. Birkhäuser,
Boston, MA, 2004.

[39] A. Stolyar. Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm. Queueing Systems, 50(4):401–457, 2005.

[40] L. Tassiulas. Linear complexity algorithms for maximum throughput
in radio networks and input queued switches. In Proceedings of IEEE
Infocom, pages 533–539, 1998.

[41] L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. IEEE Transactions on Automatic Control,
36:1936–1948, December 1992.

[42] X. Wu and R. Srikant. Regulated maximal matching: A distributed
scheduling algorithm for multi-hop wireless networks with node-
exclusive spectrum sharing. In Proceedings of IEEE Conference on
Decision and Control., 2005.

[43] X. Wu and R. Srikant. Bounds on the capacity region of multi-hop
wireless networks under distributedgreedy scheduling. In Proceedings
of IEEE Infocom, 2006.

[44] H. Yaiche, R. R. Mazumdar, and C. Rosenberg. A game-theoretic
framework for bandwidth allocation and pricing in broadband networks.
IEEE/ACM Transactions on Networking, 8(5):667–678, October 2000.

Atilla Eryilmaz (S ’00-M ’06) received his B.S.
degree in Electrical and Electronics Engineering
from Boḡaziçi University, Istanbul, in 1999, and
the M.S. and Ph.D. degrees in Electrical and Com-
puter Engineering from the University of Illinois at
Urbana-Champaign in 2001 and 2005, respectively.
Between 2005 and 2007, he worked as a Postdoc-
toral Associate at the Laboratory for Information and
Decision Systems at the Massachusetts Institute of
Technology. He is currently an Assistant Professor
of Electrical and Computer Engineering at the Ohio

State University. His research interests include communication networks, opti-
mal control of stochastic networks, optimization theory, distributed algorithms,
stochastic processes and network coding.

Asu Ozdaglar received the B.S. degree in elec-
trical engineering from the Middle East Technical
University, Ankara, Turkey, in 1996, and the S.M.
and the Ph.D. degrees in electrical engineering and
computer science from the Massachusetts Institute of
Technology, Cambridge, in 1998 and 2003, respec-
tively. Since 2003, she has been a member of the
faculty of the Electrical Engineering and Computer
Science Department at the Massachusetts Institute
of Technology, where she is currently the Class of
1943 Career Development Associate Professor. She

is also a member of the Laboratory for Information and Decision Systems
and the Operations Research Center. She is the recipient of the MIT Graduate
Student Council Teaching award, the NSF Career award, and the 2008
Donald P. Eckman award of the American Automatic Control Council. Her
research interests include optimization theory, with emphasis on nonlinear
programming and convex analysis, game theory, distributed optimization
methods, and network optimization and control.

Devavrat Shah is currently an assistant professor
with EECS, MIT since Fall 2005. He is a member of
the Laboratory of Information and Decision Systems
(LIDS). He received his BTech degree in Computer
Science & Eng. from IIT-Bombay in 1999 with
the honor of the President of India Gold Medal.
He received his Ph.D. from the Computer Science
department, Stanford University in October 2004.
He was a post-doc in the Statistics department at
Stanford in 2004-05. He was co-awarded the IEEE
INFOCOM best paper award in 2004 and ACM SIG-

METRIC/Performance best paper awarded in 2006. He received 2005 George
B. Dantzig best disseration award from the INFORMS. He received NSF
CAREER award in 2006. His research interests include network algorithms,
stochastic networks, network information theory and statistical inference.

Eytan Modiano received his B.S. degree in Elec-
trical Engineering and Computer Science from the
University of Connecticut at Storrs in 1986 and
his M.S. and PhD degrees, both in Electrical En-
gineering, from the University of Maryland, College
Park, MD, in 1989 and 1992 respectively. He was
a Naval Research Laboratory Fellow between 1987
and 1992 and a National Research Council Post
Doctoral Fellow during 1992-1993. Between 1993
and 1999 he was with MIT Lincoln Laboratory
where he was the project leader for MIT Lincoln

Laboratory’s Next Generation Internet (NGI) project. Since 1999 he has
been on the faculty at MIT; where he is presently an Associate Professor.
His research is on communication networks and protocols with emphasis on
satellite, wireless, and optical networks.

